57,589 research outputs found

    Enabling security checking of automotive ECUs with formal CSP models

    Get PDF

    BlockChain: A distributed solution to automotive security and privacy

    Full text link
    Interconnected smart vehicles offer a range of sophisticated services that benefit the vehicle owners, transport authorities, car manufacturers and other service providers. This potentially exposes smart vehicles to a range of security and privacy threats such as location tracking or remote hijacking of the vehicle. In this article, we argue that BlockChain (BC), a disruptive technology that has found many applications from cryptocurrencies to smart contracts, is a potential solution to these challenges. We propose a BC-based architecture to protect the privacy of the users and to increase the security of the vehicular ecosystem. Wireless remote software updates and other emerging services such as dynamic vehicle insurance fees, are used to illustrate the efficacy of the proposed security architecture. We also qualitatively argue the resilience of the architecture against common security attacks

    Grid-enabled Workflows for Industrial Product Design

    No full text
    This paper presents a generic approach for developing and using Grid-based workflow technology for enabling cross-organizational engineering applications. Using industrial product design examples from the automotive and aerospace industries we highlight the main requirements and challenges addressed by our approach and describe how it can be used for enabling interoperability between heterogeneous workflow engines

    D.2.1.2 First integrated Grid infrastructure

    No full text

    On Using Blockchains for Safety-Critical Systems

    Full text link
    Innovation in the world of today is mainly driven by software. Companies need to continuously rejuvenate their product portfolios with new features to stay ahead of their competitors. For example, recent trends explore the application of blockchains to domains other than finance. This paper analyzes the state-of-the-art for safety-critical systems as found in modern vehicles like self-driving cars, smart energy systems, and home automation focusing on specific challenges where key ideas behind blockchains might be applicable. Next, potential benefits unlocked by applying such ideas are presented and discussed for the respective usage scenario. Finally, a research agenda is outlined to summarize remaining challenges for successfully applying blockchains to safety-critical cyber-physical systems

    Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

    Full text link
    We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at fostering the collaboration between system designers and security experts at all methodological stages of the development of an embedded system. A central issue in the design of an embedded system is the definition of the hardware/software partitioning of the architecture of the system, which should take place as early as possible. SysML-Sec aims to extend the relevance of this analysis through the integration of security requirements and threats. In particular, we propose an agile methodology whose aim is to assess early on the impact of the security requirements and of the security mechanisms designed to satisfy them over the safety of the system. Security concerns are captured in a component-centric manner through existing SysML diagrams with only minimal extensions. After the requirements captured are derived into security and cryptographic mechanisms, security properties can be formally verified over this design. To perform the latter, model transformation techniques are implemented in the SysML-Sec toolchain in order to derive a ProVerif specification from the SysML models. An automotive firmware flashing procedure serves as a guiding example throughout our presentation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Towards a Standardised Framework for Securing Connected Vehicles

    Get PDF
    Vehicular security was long limited to physical security - to prevent theft. However, the trend of adding more comfort functions and delegating advanced driving tasks back to the vehicle increased the magnitude of attacks, making cybersecurity inevitable. Attackers only need to find one vulnerability in the myriad of electronic control units (ECUs) and communication technologies used in a vehicle to compromise its functions. Vehicles might also be attacked by the owners, who want to modify or even disable certain vehicle functions.Many different parties are involved in the development of such a complex system as the functions are distributed over more than 100 ECUs, making it difficult to get an overall picture of the achieved security. Therefore, moving towards a standardised security framework tailored for the automotive domain is necessary.In this thesis we study various safety and security standards and proposed frameworks from different industrial domains with respect to their way of classifying demands in the form of levels and their methods to derive requirements. In our proposed framework, we suggest security levels appropriate for automotive systems and continue with a mapping between these security levels and identified security mechanisms and design rules to provide basic security. We further study in detail a mechanism which provides freshness to authenticated messages, namely AUTOSAR SecOC Profile 3, and present a novel extension that offers a faster synchronisation between ECUs and reduces the number of required messages for synchronisation
    • …
    corecore