609,816 research outputs found

    Eriksson's numbers game and finite Coxeter groups

    Get PDF
    The numbers game is a one-player game played on a finite simple graph with certain ``amplitudes'' assigned to its edges and with an initial assignment of real numbers to its nodes. The moves of the game successively transform the numbers at the nodes using the amplitudes in a certain way. This game and its interactions with Coxeter/Weyl group theory and Lie theory have been studied by many authors. In particular, Eriksson connects certain geometric representations of Coxeter groups with games on graphs with certain real number amplitudes. Games played on such graphs are ``E-games.'' Here we investigate various finiteness aspects of E-game play: We extend Eriksson's work relating moves of the game to reduced decompositions of elements of a Coxeter group naturally associated to the game graph. We use Stembridge's theory of fully commutative Coxeter group elements to classify what we call here the ``adjacency-free'' initial positions for finite E-games. We characterize when the positive roots for certain geometric representations of finite Coxeter groups can be obtained from E-game play. Finally, we provide a new Dynkin diagram classification result of E-game graphs meeting a certain finiteness requirement.Comment: 18 page

    Impartial avoidance games for generating finite groups

    Get PDF
    We study an impartial avoidance game introduced by Anderson and Harary. The game is played by two players who alternately select previously unselected elements of a finite group. The first player who cannot select an element without making the set of jointly-selected elements into a generating set for the group loses the game. We develop criteria on the maximal subgroups that determine the nim-numbers of these games and use our criteria to study our game for several families of groups, including nilpotent, sporadic, and symmetric groups.Comment: 14 pages, 4 figures. Revised in response to comments from refere

    An explicit bound on " for nonemptiness of "-cores of games

    Get PDF
    We consider parameterized collections of games without side payments and determine a bound on E so that all suffciently large games in the collection have non-empty E-cores. Our result makes explicit the relationship between the required size of E for non-emptiness of the E-core, the parameters describing the collection of games, and the size of the total player set. Given the parameters describing the collection, the larger the game, the smaller the E that can bechosen
    corecore