1,639 research outputs found

    Efficient data structures for model-free data-driven computational mechanics

    Get PDF
    The data-driven computing paradigm initially introduced by Kirchdoerfer & Ortiz (2016) enables finite element computations in solid mechanics to be performed directly from material data sets, without an explicit material model. From a computational effort point of view, the most challenging task is the projection of admissible states at material points onto their closest states in the material data set. In this study, we compare and develop several possible data structures for solving the nearest-neighbor problem. We show that approximate nearest-neighbor (ANN) algorithms can accelerate material data searches by several orders of magnitude relative to exact searching algorithms. The approximations are suggested by—and adapted to—the structure of the data-driven iterative solver and result in no significant loss of solution accuracy. We assess the performance of the ANN algorithm with respect to material data set size with the aid of a 3D elasticity test case. We show that computations on a single processor with up to one billion material data points are feasible within a few seconds execution time with a speed up of more than 10⁶ with respect to exact k-d trees

    Continuous Spatial Query Processing:A Survey of Safe Region Based Techniques

    Get PDF
    In the past decade, positioning system-enabled devices such as smartphones have become most prevalent. This functionality brings the increasing popularity of location-based services in business as well as daily applications such as navigation, targeted advertising, and location-based social networking. Continuous spatial queries serve as a building block for location-based services. As an example, an Uber driver may want to be kept aware of the nearest customers or service stations. Continuous spatial queries require updates to the query result as the query or data objects are moving. This poses challenges to the query efficiency, which is crucial to the user experience of a service. A large number of approaches address this efficiency issue using the concept of safe region . A safe region is a region within which arbitrary movement of an object leaves the query result unchanged. Such a region helps reduce the frequency of query result update and hence improves query efficiency. As a result, safe region-based approaches have been popular for processing various types of continuous spatial queries. Safe regions have interesting theoretical properties and are worth in-depth analysis. We provide a comparative study of safe region-based approaches. We describe how safe regions are computed for different types of continuous spatial queries, showing how they improve query efficiency. We compare the different safe region-based approaches and discuss possible further improvements
    • 

    corecore