98 research outputs found

    Reconstruction Threshold for the Hardcore Model

    Full text link
    In this paper we consider the reconstruction problem on the tree for the hardcore model. We determine new bounds for the non-reconstruction regime on the k-regular tree showing non-reconstruction when lambda < (ln 2-o(1))ln^2(k)/(2 lnln(k)) improving the previous best bound of lambda < e-1. This is almost tight as reconstruction is known to hold when lambda> (e+o(1))ln^2(k). We discuss the relationship for finding large independent sets in sparse random graphs and to the mixing time of Markov chains for sampling independent sets on trees.Comment: 14 pages, 2 figure

    The Complexity of Change

    Full text link
    Many combinatorial problems can be formulated as "Can I transform configuration 1 into configuration 2, if certain transformations only are allowed?". An example of such a question is: given two k-colourings of a graph, can I transform the first k-colouring into the second one, by recolouring one vertex at a time, and always maintaining a proper k-colouring? Another example is: given two solutions of a SAT-instance, can I transform the first solution into the second one, by changing the truth value one variable at a time, and always maintaining a solution of the SAT-instance? Other examples can be found in many classical puzzles, such as the 15-Puzzle and Rubik's Cube. In this survey we shall give an overview of some older and more recent work on this type of problem. The emphasis will be on the computational complexity of the problems: how hard is it to decide if a certain transformation is possible or not?Comment: 28 pages, 6 figure

    Reconstruction of Random Colourings

    Get PDF
    Reconstruction problems have been studied in a number of contexts including biology, information theory and and statistical physics. We consider the reconstruction problem for random kk-colourings on the Δ\Delta-ary tree for large kk. Bhatnagar et. al. showed non-reconstruction when Δ12klogko(klogk)\Delta \leq \frac12 k\log k - o(k\log k) and reconstruction when Δklogk+o(klogk)\Delta \geq k\log k + o(k\log k). We tighten this result and show non-reconstruction when Δk[logk+loglogk+1ln2o(1)]\Delta \leq k[\log k + \log \log k + 1 - \ln 2 -o(1)] and reconstruction when Δk[logk+loglogk+1+o(1)]\Delta \geq k[\log k + \log \log k + 1+o(1)].Comment: Added references, updated notatio

    Sampling Random Colorings of Sparse Random Graphs

    Get PDF
    We study the mixing properties of the single-site Markov chain known as the Glauber dynamics for sampling kk-colorings of a sparse random graph G(n,d/n)G(n,d/n) for constant dd. The best known rapid mixing results for general graphs are in terms of the maximum degree Δ\Delta of the input graph GG and hold when k>11Δ/6k>11\Delta/6 for all GG. Improved results hold when k>αΔk>\alpha\Delta for graphs with girth 5\geq 5 and Δ\Delta sufficiently large where α1.7632\alpha\approx 1.7632\ldots is the root of α=exp(1/α)\alpha=\exp(1/\alpha); further improvements on the constant α\alpha hold with stronger girth and maximum degree assumptions. For sparse random graphs the maximum degree is a function of nn and the goal is to obtain results in terms of the expected degree dd. The following rapid mixing results for G(n,d/n)G(n,d/n) hold with high probability over the choice of the random graph for sufficiently large constant~dd. Mossel and Sly (2009) proved rapid mixing for constant kk, and Efthymiou (2014) improved this to kk linear in~dd. The condition was improved to k>3dk>3d by Yin and Zhang (2016) using non-MCMC methods. Here we prove rapid mixing when k>αdk>\alpha d where α1.7632\alpha\approx 1.7632\ldots is the same constant as above. Moreover we obtain O(n3)O(n^{3}) mixing time of the Glauber dynamics, while in previous rapid mixing results the exponent was an increasing function in dd. As in previous results for random graphs our proof analyzes an appropriately defined block dynamics to "hide" high-degree vertices. One new aspect in our improved approach is utilizing so-called local uniformity properties for the analysis of block dynamics. To analyze the "burn-in" phase we prove a concentration inequality for the number of disagreements propagating in large blocks
    corecore