5 research outputs found

    A boundary algebraic formulation for plane strain elastodynamic scattering

    Get PDF
    Solving of elastodynamic problems arises in many scientific fields such as wave propagation in the ground, non-destructive testing, vibration design of buildings, or vibroacoustics in general. An integral formulation based on boundary algebraic equations is presented here. This formulation leads to a numerical method with a discretised boundary. An important advantage of the method over the standard boundary element method (BEM) is that no contour (2D) or surface (3D) integral needs to be computed. This feature is helpful in order to obtain a discrete version of the combined field integral equations (designed to damp numerically the fictitious eigenfrequencies) without difficulties caused by the evaluation of hypersingular integrals. The key aspects are: (i) the approach deals with discrete equations from the very beginning; (ii) discrete (instead of continuous) tensor Green's functions are considered (the methodology to evaluate them is demonstrated); (iii) the boundary must be described by means of a regular square grid. In order to overcome the drawback of this third condition the boundary integral is coupled, if needed, with a thin layer of finite elements. This improves the description of curved geometries and reduces numerical errors. The properties of the method are demonstrated by means of numerical examples: the scattering of waves by objects and holes in an unbounded elastic medium, and an interior elastic problem.Peer ReviewedPostprint (author's final draft

    High order methods for acoustic scattering: Coupling Farfield Expansions ABC with Deferred-Correction methods

    Full text link
    Arbitrary high order numerical methods for time-harmonic acoustic scattering problems originally defined on unbounded domains are constructed. This is done by coupling recently developed high order local absorbing boundary conditions (ABCs) with finite difference methods for the Helmholtz equation. These ABCs are based on exact representations of the outgoing waves by means of farfield expansions. The finite difference methods, which are constructed from a deferred-correction (DC) technique, approximate the Helmholtz equation and the ABCs, with the appropriate number of terms, to any desired order. As a result, high order numerical methods with an overall order of convergence equal to the order of the DC schemes are obtained. A detailed construction of these DC finite difference schemes is presented. Additionally, a rigorous proof of the consistency of the DC schemes with the Helmholtz equation and the ABCs in polar coordinates is also given. The results of several numerical experiments corroborate the high order convergence of the novel method.Comment: 36 pages, 20 figure
    corecore