4,379 research outputs found

    A new integral representation for quasiperiodic fields and its application to two-dimensional band structure calculations

    Full text link
    In this paper, we consider band-structure calculations governed by the Helmholtz or Maxwell equations in piecewise homogeneous periodic materials. Methods based on boundary integral equations are natural in this context, since they discretize the interface alone and can achieve high order accuracy in complicated geometries. In order to handle the quasi-periodic conditions which are imposed on the unit cell, the free-space Green's function is typically replaced by its quasi-periodic cousin. Unfortunately, the quasi-periodic Green's function diverges for families of parameter values that correspond to resonances of the empty unit cell. Here, we bypass this problem by means of a new integral representation that relies on the free-space Green's function alone, adding auxiliary layer potentials on the boundary of the unit cell itself. An important aspect of our method is that by carefully including a few neighboring images, the densities may be kept smooth and convergence rapid. This framework results in an integral equation of the second kind, avoids spurious resonances, and achieves spectral accuracy. Because of our image structure, inclusions which intersect the unit cell walls may be handled easily and automatically. Our approach is compatible with fast-multipole acceleration, generalizes easily to three dimensions, and avoids the complication of divergent lattice sums.Comment: 25 pages, 6 figures, submitted to J. Comput. Phy

    High order methods for acoustic scattering: Coupling Farfield Expansions ABC with Deferred-Correction methods

    Full text link
    Arbitrary high order numerical methods for time-harmonic acoustic scattering problems originally defined on unbounded domains are constructed. This is done by coupling recently developed high order local absorbing boundary conditions (ABCs) with finite difference methods for the Helmholtz equation. These ABCs are based on exact representations of the outgoing waves by means of farfield expansions. The finite difference methods, which are constructed from a deferred-correction (DC) technique, approximate the Helmholtz equation and the ABCs, with the appropriate number of terms, to any desired order. As a result, high order numerical methods with an overall order of convergence equal to the order of the DC schemes are obtained. A detailed construction of these DC finite difference schemes is presented. Additionally, a rigorous proof of the consistency of the DC schemes with the Helmholtz equation and the ABCs in polar coordinates is also given. The results of several numerical experiments corroborate the high order convergence of the novel method.Comment: 36 pages, 20 figure

    A High-Order Numerical Method for the Nonlinear Helmholtz Equation in Multidimensional Layered Media

    Full text link
    We present a novel computational methodology for solving the scalar nonlinear Helmholtz equation (NLH) that governs the propagation of laser light in Kerr dielectrics. The methodology addresses two well-known challenges in nonlinear optics: Singular behavior of solutions when the scattering in the medium is assumed predominantly forward (paraxial regime), and the presence of discontinuities in the % linear and nonlinear optical properties of the medium. Specifically, we consider a slab of nonlinear material which may be grated in the direction of propagation and which is immersed in a linear medium as a whole. The key components of the methodology are a semi-compact high-order finite-difference scheme that maintains accuracy across the discontinuities and enables sub-wavelength resolution on large domains at a tolerable cost, a nonlocal two-way artificial boundary condition (ABC) that simultaneously facilitates the reflectionless propagation of the outgoing waves and forward propagation of the given incoming waves, and a nonlinear solver based on Newton's method. The proposed methodology combines and substantially extends the capabilities of our previous techniques built for 1Dand for multi-D. It facilitates a direct numerical study of nonparaxial propagation and goes well beyond the approaches in the literature based on the "augmented" paraxial models. In particular, it provides the first ever evidence that the singularity of the solution indeed disappears in the scalar NLH model that includes the nonparaxial effects. It also enables simulation of the wavelength-width spatial solitons, as well as of the counter-propagating solitons.Comment: 40 pages, 10 figure

    High-order numerical methods for 2D parabolic problems in single and composite domains

    Get PDF
    In this work, we discuss and compare three methods for the numerical approximation of constant- and variable-coefficient diffusion equations in both single and composite domains with possible discontinuity in the solution/flux at interfaces, considering (i) the Cut Finite Element Method; (ii) the Difference Potentials Method; and (iii) the summation-by-parts Finite Difference Method. First we give a brief introduction for each of the three methods. Next, we propose benchmark problems, and consider numerical tests-with respect to accuracy and convergence-for linear parabolic problems on a single domain, and continue with similar tests for linear parabolic problems on a composite domain (with the interface defined either explicitly or implicitly). Lastly, a comparative discussion of the methods and numerical results will be given.Comment: 45 pages, 12 figures, in revision for Journal of Scientific Computin
    • …
    corecore