50 research outputs found

    Natural Factors of the Medvedev Lattice Capturing IPC

    Full text link
    Skvortsova showed that there is a factor of the Medvedev lattice which captures intuitionistic propositional logic (IPC). However, her factor is unnatural in the sense that it is constructed in an ad hoc manner. We present a more natural example of such a factor. We also show that for every non-trivial factor of the Medvedev lattice its theory is contained in Jankov's logic, the deductive closure of IPC plus the weak law of the excluded middle. This answers a question by Sorbi and Terwijn

    Weihrauch goes Brouwerian

    Full text link
    We prove that the Weihrauch lattice can be transformed into a Brouwer algebra by the consecutive application of two closure operators in the appropriate order: first completion and then parallelization. The closure operator of completion is a new closure operator that we introduce. It transforms any problem into a total problem on the completion of the respective types, where we allow any value outside of the original domain of the problem. This closure operator is of interest by itself, as it generates a total version of Weihrauch reducibility that is defined like the usual version of Weihrauch reducibility, but in terms of total realizers. From a logical perspective completion can be seen as a way to make problems independent of their premises. Alongside with the completion operator and total Weihrauch reducibility we need to study precomplete representations that are required to describe these concepts. In order to show that the parallelized total Weihrauch lattice forms a Brouwer algebra, we introduce a new multiplicative version of an implication. While the parallelized total Weihrauch lattice forms a Brouwer algebra with this implication, the total Weihrauch lattice fails to be a model of intuitionistic linear logic in two different ways. In order to pinpoint the algebraic reasons for this failure, we introduce the concept of a Weihrauch algebra that allows us to formulate the failure in precise and neat terms. Finally, we show that the Medvedev Brouwer algebra can be embedded into our Brouwer algebra, which also implies that the theory of our Brouwer algebra is Jankov logic.Comment: 36 page

    Rethinking the notion of oracle: A link between synthetic descriptive set theory and effective topos theory

    Full text link
    We present three different perspectives of oracle. First, an oracle is a blackbox; second, an oracle is an endofunctor on the category of represented spaces; and third, an oracle is an operation on the object of truth-values. These three perspectives create a link between the three fields, computability theory, synthetic descriptive set theory, and effective topos theory

    Effective Choice and Boundedness Principles in Computable Analysis

    Full text link
    In this paper we study a new approach to classify mathematical theorems according to their computational content. Basically, we are asking the question which theorems can be continuously or computably transferred into each other? For this purpose theorems are considered via their realizers which are operations with certain input and output data. The technical tool to express continuous or computable relations between such operations is Weihrauch reducibility and the partially ordered degree structure induced by it. We have identified certain choice principles which are cornerstones among Weihrauch degrees and it turns out that certain core theorems in analysis can be classified naturally in this structure. In particular, we study theorems such as the Intermediate Value Theorem, the Baire Category Theorem, the Banach Inverse Mapping Theorem and others. We also explore how existing classifications of the Hahn-Banach Theorem and Weak K"onig's Lemma fit into this picture. We compare the results of our classification with existing classifications in constructive and reverse mathematics and we claim that in a certain sense our classification is finer and sheds some new light on the computational content of the respective theorems. We develop a number of separation techniques based on a new parallelization principle, on certain invariance properties of Weihrauch reducibility, on the Low Basis Theorem of Jockusch and Soare and based on the Baire Category Theorem. Finally, we present a number of metatheorems that allow to derive upper bounds for the classification of the Weihrauch degree of many theorems and we discuss the Brouwer Fixed Point Theorem as an example
    corecore