6 research outputs found

    Coseismic and Postseismic Displacement of 2011 Mw 6.8 Tarlay Earthquake, Myanmar using InSAR Techniques and Inversion Analysis

    Get PDF
    In this study, we investigate the March 24th 2011 Mw=6.8 Tarlay earthquake, Myanmar using Interferometric Synthetic Aperture Radar (InSAR) and inversion analysis. We firstly invert InSAR coseismic displacement from our previous study. The inversions are carried out in both single and multi-patch model. The coseismic slip of 2.5 meter from single-patch solution is then combined with long-term slip rate from geomorphological study, resulting in an estimate of 1,140 - 4,160 years recurrence period. Then, coulomb stress changes on nearby faults in northern Thailand are calculated. It is found that stress in western and middle segments of Mae Chan fault decreases significantly while stress increase in eastern segment of Mae Chan, Mae Ing and Chiang Kham fault. Finally, the results from PSInSAR of 29 Radarsat-2 images reveal postseismic displacement rates between -24.4.6 to 34.5 millimeters per yea

    Wenchuan Earthquake Deformation 3D Modelling based on ALOS/PALSAR Data

    No full text
    A devastating earthquake of magnitude Mw 7.9 occurred in Wenchuan area of Sichuan Province, China on 12th May 2008 and caused great casualties and economic damage. This study is aiming to investigate the faulting geometry and motion of the major seismic faults in Longmenshan fault thrust belt that caused this earthquake, based on the surface rupture displacement data measured using differential interferometric synthetic aperture radar (DInSAR) and SAR amplitude pixel-offset techniques. The cross-event Japanese ALOS PALSAR data have been used for this study. First, the methodology for recovering the missing data in the decoherence zone of the DInSAR line-of-sight (LOS) surface motion maps was developed. In the area along the seismic fault zone, the coherence between pre- and post-event SAR images is completely lost because of the earthquake induced violent and chaotic destruction on the land surface and as the result, no surface displacement can be measured using the DInSAR technique. An Adaptive Local Kriging (ALK) technique has then been developed to retrieve the interferometric fringe patterns in the decoherence zone. The novel ALK operating in a multi-step approach enables to retrieve and interpolate the values with high fidelity to the original dataset. Thus a map of continuous radar LOS displacement was generated. Then, the horizontal displacement motion maps in ground range and azimuth direction were derived from cross-event SAR amplitude image pairs using advanced sub-pixel offset technique, Phase Correlation based Image Analysis System (PCIAS). Though the ground range pixel-offset is proportional to the LOS displacement, the azimuth pixel-offset data provide extra information of the coseismic motion. Thus the horizontal displacement vector field can be obtained in order to constrain the faulting motions in key areas. Finally, with the constraints of the ALK refined DInSAR data and the horizontal displacement data together with the published seismic focal mechanism solutions, seismic reflection profiles and field observations, forward modelling was proceeded using the Poly3D software to decide the most likely faulting geometry based on the optimal matching between the simulated and the measured surface displacement. In the much disputed Beichuan – Pengguan area, the best fit is achieved only when the Pengguan fault is set as the main fault that intercept the Yingxiu-Beichuan fault at a depth of about 13 kilometres. This geometric relationship between the two faults and the distribution of slip is compatible with them being two adjacent splay faults on a propagating thrust

    Coseismic Ground Deformation Reproduced through Numerical Modeling: A Parameter Sensitivity Analysis

    Get PDF
    Coseismic ground displacements detected through remote sensing surveys are often used to invert the coseismic slip distribution on geologically reliable fault planes. We analyze a well-known case study (2009 L’Aquila earthquake) to investigate how three-dimensional (3D) slip configuration affects coseismic ground surface deformation. Different coseismic slip surface configurations reconstructed using aftershocks distribution and coseismic cracks, were tested using 3D boundary element method numerical models. The models include two with slip patches that reach the surface and three models of blind normal-slip surfaces with different configurations of slip along shallowly-dipping secondary faults. We test the sensitivity of surface deformation to variations in stress drop and rock stiffness. We compare numerical models’ results with line of sight (LOS) surface deformation detected from differential SAR (Synthetic Aperture Radar) interferometry (DInSAR). The variations in fault configuration, rock stiffness and stress drop associated with the earthquake considerably impact the pattern of surface subsidence. In particular, the models with a coseismic slip patch that does not reach the surface have a better match to the line of sight coseismic surface deformation, as well as better match to the aftershock pattern, than models with rupture that reaches the surface. The coseismic slip along shallowly dipping secondary faults seems to provide a minor contribution toward surface deformation

    Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap

    Get PDF
    Remote sensing data and methods are widely deployed in order to contribute to the assessment of numerous components of earthquake risk. While for earthquake hazardrelated investigations, the use of remotely sensed data is an established methodological element with a long research tradition, earthquake vulnerability–centred assessments incorporating remote sensing data are increasing primarily in recent years. This goes along with a changing perspective of the scientific community which considers the assessment of vulnerability and its constituent elements as a pivotal part of a comprehensive risk analysis. Thereby, the availability of new sensors systems enables an appreciable share of remote sensing first. In this manner, a survey of the interdisciplinary conceptual literature dealing with the scientific perception of risk, hazard and vulnerability reveals the demand for a comprehensive description of earthquake hazards as well as an assessment of the present and future conditions of the elements exposed. A review of earthquake-related remote sensing literature, realized both in a qualitative and quantitative manner, shows the already existing and published manifold capabilities of remote sensing contributing to assess earthquake risk. These include earthquake hazard-related analysis such as detection and measurement of lineaments and surface deformations in pre- and post-event applications. Furthermore, pre-event seismic vulnerability–centred assessment of the built and natural environment and damage assessments for post-event applications are presented. Based on the review and the discussion of scientific trends and current research projects, first steps towards a roadmap for remote sensing are drawn, explicitly taking scientific, technical, multi- and transdisciplinary as well as political perspectives into account, which is intended to open possible future research activities

    Relations entre propriétés des failles et propriétés des forts séismes

    Get PDF
    I examine the relations between the properties of long-term geological faults and the properties of the large earthquakes these faults produce. I have gathered available seismological information on large historical earthquakes worldwide and mapped in detail, on satellite images, both the long-term fault and the rupture traces. The combined analysis of the data shows that: i) long-term faults have a number of generic properties (arrangement of overall fault networks, lateral segmentation of fault traces, form of cumulative slip distribution, etc); ii) large earthquakes also have generic properties (similarity of envelope shape of coseismic slip-length profiles, of decrease in rupture width along rupture length, of number of broken segments, of stress drop on broken segments, of relative distance between hypocenter and zone of maximum slip, etc); iii) the structural maturity of the faults is the tectonic property most impacting the behavior of large earthquakes. The maturity likely acts in reducing both the static friction and the geometric complexity of the fault plane. It partly governs the location of the earthquake initiation, the location and amplitude of the maximum coseismic slip, the direction of the coseismic slip decrease, the rupture propagation efficiency and speed, the number of major fault segments that are broken, and hence the rupture length and its overall stress drop. To understand the physics of earthquakes, it thus seems necessary to analyze jointly the tectonic properties of the broken faults and the seismological properties of the earthquakes.J’examine les relations entre propriétés des failles géologiques long-termes et propriétés des forts séismes que produisent ces failles. J’ai compilé les données sismologiques disponibles sur les grands séismes historiques mondiaux, et cartographié, sur images satellitaires, les failles long-termes rompues par ces séismes et les traces des ruptures. L’analyse combinée des données montre que : i) les failles long-termes ont certaines propriétés génériques (organisation des réseaux, segmentation latérale, forme de distribution du glissement cumulé, etc) ; ii) les forts séismes ont également des propriétés communes (similarité de distribution du glissement cosismique, du nombre de segments rompus, de la chute de contrainte sur chaque segment majeur rompu, de la distance relative entre hypocentre et zone de glissement maximum, etc) ; iii) la maturité structurale des failles est la propriété tectonique qui impacte le plus le comportement des forts séismes. Il est probable que cette maturité diminue la friction statique et la complexité géométrique du plan de faille. Elle agit sur la localisation de la zone d’initiation du séisme, sur la localisation et l’amplitude maximum du glissement cosismique, sur la direction de décroissance de ce glissement, sur la « capacité » de la rupture à se propager et donc sur sa vitesse de propagation. Elle dicte le nombre de segments majeurs qui peuvent être rompus, et par conséquent, elle contrôle la longueur totale et la chute de contrainte globale de la rupture. Pour comprendre la physique des forts séismes, il apparaît donc indispensable d’analyser conjointement les propriétés des failles rompues et les propriétés des séismes produits
    corecore