150 research outputs found

    Distinct Distances in Graph Drawings

    Get PDF
    The \emph{distance-number} of a graph GG is the minimum number of distinct edge-lengths over all straight-line drawings of GG in the plane. This definition generalises many well-known concepts in combinatorial geometry. We consider the distance-number of trees, graphs with no K4K^-_4-minor, complete bipartite graphs, complete graphs, and cartesian products. Our main results concern the distance-number of graphs with bounded degree. We prove that nn-vertex graphs with bounded maximum degree and bounded treewidth have distance-number in O(logn)\mathcal{O}(\log n). To conclude such a logarithmic upper bound, both the degree and the treewidth need to be bounded. In particular, we construct graphs with treewidth 2 and polynomial distance-number. Similarly, we prove that there exist graphs with maximum degree 5 and arbitrarily large distance-number. Moreover, as Δ\Delta increases the existential lower bound on the distance-number of Δ\Delta-regular graphs tends to Ω(n0.864138)\Omega(n^{0.864138})

    Bounds on the maximum multiplicity of some common geometric graphs

    Get PDF
    We obtain new lower and upper bounds for the maximum multiplicity of some weighted and, respectively, non-weighted common geometric graphs drawn on n points in the plane in general position (with no three points collinear): perfect matchings, spanning trees, spanning cycles (tours), and triangulations. (i) We present a new lower bound construction for the maximum number of triangulations a set of n points in general position can have. In particular, we show that a generalized double chain formed by two almost convex chains admits {\Omega}(8.65^n) different triangulations. This improves the bound {\Omega}(8.48^n) achieved by the double zig-zag chain configuration studied by Aichholzer et al. (ii) We present a new lower bound of {\Omega}(12.00^n) for the number of non-crossing spanning trees of the double chain composed of two convex chains. The previous bound, {\Omega}(10.42^n), stood unchanged for more than 10 years. (iii) Using a recent upper bound of 30^n for the number of triangulations, due to Sharir and Sheffer, we show that n points in the plane in general position admit at most O(68.62^n) non-crossing spanning cycles. (iv) We derive lower bounds for the number of maximum and minimum weighted geometric graphs (matchings, spanning trees, and tours). We show that the number of shortest non-crossing tours can be exponential in n. Likewise, we show that both the number of longest non-crossing tours and the number of longest non-crossing perfect matchings can be exponential in n. Moreover, we show that there are sets of n points in convex position with an exponential number of longest non-crossing spanning trees. For points in convex position we obtain tight bounds for the number of longest and shortest tours. We give a combinatorial characterization of the longest tours, which leads to an O(nlog n) time algorithm for computing them

    On the geometric dilation of closed curves, graphs, and point sets

    Full text link
    The detour between two points u and v (on edges or vertices) of an embedded planar graph whose edges are curves is the ratio between the shortest path in in the graph between u and v and their Euclidean distance. The maximum detour over all pairs of points is called the geometric dilation. Ebbers-Baumann, Gruene and Klein have shown that every finite point set is contained in a planar graph whose geometric dilation is at most 1.678, and some point sets require graphs with dilation at least pi/2 = 1.57... We prove a stronger lower bound of 1.00000000001*pi/2 by relating graphs with small dilation to a problem of packing and covering the plane by circular disks. The proof relies on halving pairs, pairs of points dividing a given closed curve C in two parts of equal length, and their minimum and maximum distances h and H. Additionally, we analyze curves of constant halving distance (h=H), examine the relation of h to other geometric quantities and prove some new dilation bounds.Comment: 31 pages, 16 figures. The new version is the extended journal submission; it includes additional material from a conference submission (ref. [6] in the paper

    Examples, Counterexamples, and Enumeration Results for Foldings and Unfoldings between Polygons and Polytopes

    Get PDF
    We investigate how to make the surface of a convex polyhedron (a polytope) by folding up a polygon and gluing its perimeter shut, and the reverse process of cutting open a polytope and unfolding it to a polygon. We explore basic enumeration questions in both directions: Given a polygon, how many foldings are there? Given a polytope, how many unfoldings are there to simple polygons? Throughout we give special attention to convex polygons, and to regular polygons. We show that every convex polygon folds to an infinite number of distinct polytopes, but that their number of combinatorially distinct gluings is polynomial. There are, however, simple polygons with an exponential number of distinct gluings. In the reverse direction, we show that there are polytopes with an exponential number of distinct cuttings that lead to simple unfoldings. We establish necessary conditions for a polytope to have convex unfoldings, implying, for example, that among the Platonic solids, only the tetrahedron has a convex unfolding. We provide an inventory of the polytopes that may unfold to regular polygons, showing that, for n>6, there is essentially only one class of such polytopes.Comment: 54 pages, 33 figure

    Finding Paths in the Rotation Graph of Binary Trees

    Get PDF
    A binary tree coding scheme is a bijection mapping a set of binary trees to a set of integer tuples called codewords. One problem considered in the literature is that of listing the codewords for n-node binary trees, such that successive codewords represent trees differing by a single rotation, a standard operation for rebalancing binary search trees. Then, the codeword sequence corresponds to an Hamiltonian path in the rotation graph Rn of binary trees, where each node is labelled with an n-node binary tree, and an edge connects two nodes when their trees differ by a single rotation. A related problem is finding a shortest path between two nodes in Rn, which reduces to the problem of transforming one binary tree into another using a minimum number of rotations. Yet a third problem is determining properties of the rotation graph. Our work addresses these three problems. A correspondence between n-node binary trees and triangulations of (n+2)-gons allows labelling nodes of Rn, with triangulations, where adjacent triangulations differ by a single diagonal flip. It has been proven, using properties of triangulations, that Rn is Hamiltonian, and that its diameter is bounded above by 2n-6 for n ≥ 11. In Chapter Three we use triangulations to show that the radius of Rn, is n-1; to characterize the n+2 nodes in the center; to show that Rn is the union of n+2 copies of Rn-1; and to prove that Rn is (n-1)-connected. We also introduce the skeleton graph RSn of Rn, and give additional properties of both graphs. In Chapter Four, we give an algorithm, OzLex, which, for each of many different coding schemes, generates 2n-1 different sequences of codewords for n-node binary trees. We also show that, for every n ≥ 4, all such sequences combined represent 2n Hamiltonian paths in Rn. In Appendix Two, we modify OzLex to create TransOx, an algorithm which generates (n+2)2n sequences of codewords from a single coding scheme, and prove that, for n ≥ 5, the sequences represent (n+2)2n-1 Hamiltonian paths. The distance between extreme nodes in Rn is the diameter of the graph. In Chapter Five, we give properties of extreme nodes in terms of their corresponding triangulations; Appendix One contains additional related information. We present two heuristics, based on flipping diagonals, that find a path between two nodes in Rn: Findpath-1, in O(n log n) time; and FindPath-2, in 0(n2 log n) time. Each computes paths with less than twice the minimum length. We also identify a class of triangulation pairs where Findpath-2 significantly outperforms FindPath-1
    corecore