9 research outputs found

    Maximum Independent Sets in Subcubic Graphs: New Results

    Get PDF
    International audienceWe consider the complexity of the classical Independent Set problem on classes of subcubic graphs characterized by a finite set of forbidden induced subgraphs. It is well-known that a necessary condition for Independent Set to be tractable in such a class (unless P=NP) is that the set of forbidden induced subgraphs includes a subdivided star S k,k,k , for some k. Here, S k,k,k is the graph obtained by taking three paths of length k and identifying one of their endpoints. It is an interesting open question whether this condition is also sufficient: is Independent Set tractable on all hereditary classes of subcu-bic graphs that exclude some S k,k,k ? A positive answer to this question would provide a complete classification of the complexity of Independent Set on all classes of subcubic graphs characterized by a finite set of forbidden induced subgraphs. The best currently known result of this type is tractability for S2,2,2-free graphs. In this paper we generalize this result by showing that the problem remains tractable on S 2,k,k-free graphs, for any fixed k. Along the way, we show that subcubic Independent Set is tractable for graphs excluding a type of graph we call an "apple with a long stem", generalizing known results for apple-free graphs

    Maximum Independent Sets in Subcubic Graphs: New Results

    Get PDF
    The maximum independent set problem is known to be NP-hard in the class of subcubic graphs, i.e. graphs of vertex degree at most 3. We present a polynomial-time solution in a subclass of subcubic graphs generalizing several previously known results

    Boundary classes for graph problems involving non-local properties

    Get PDF
    We continue the study of boundary classes for NP-hard problems and focus on seven NP-hard graph problems involving non-local properties: HAMILTONIAN CYCLE, HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE, HAMILTONIAN PATH, FEEDBACK VERTEX SET, CONNECTED VERTEX COVER, CONNECTED DOMINATING SET and GRAPH VCCON DIMENSION. Our main result is the determination of the first boundary class for FEEDBACK VERTEX SET. We also determine boundary classes for HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE and HAMILTONIAN PATH and give some insights on the structure of some boundary classes for the remaining problems

    On the maximum independent set problem in subclasses of subcubic graphs

    No full text
    International audienceIt is known that the maximum independent set problem is NP-completefor subcubic graphs, i.e. graphs of vertex degree at most 3. Moreover, theproblem is NP-complete for 3-regular Hamiltonian graphs and forH-freesubcubic graphs wheneverHcontains a connected component which is nota tree with at most 3 leaves. We show that if every connected component ofHis a tree with at most 3 leaves and at most 7 vertices, then the problem canbe solved forH-free subcubic graphs in polynomial time. We also strengthenthe NP-completeness of the problem on 3-regular Hamiltonian graphs byshowing that the problem is APX-complete in this clas

    On the maximum independent set problem in subclasses of subcubic graphs

    No full text
    It is known that the maximum independent set problem is NP-complete for subcubic graphs, i.e. graphs of vertex degree at most 3. Moreover, the problem is NP-complete for H-free subcubic graphs whenever H contains a connected component which is not a tree with at most 3 leaves. We show that if every connected component of H is a tree with at most 3 leaves and at most 7 vertices, then the problem can be solved for H-free subcubic graphs in polynomial time

    Algorithms for the Maximum Independent Set Problem

    Get PDF
    This thesis focuses mainly on the Maximum Independent Set (MIS) problem. Some related graph theoretical combinatorial problems are also considered. As these problems are generally NP-hard, we study their complexity in hereditary graph classes, i.e. graph classes defined by a set F of forbidden induced subgraphs. We revise the literature about the issue, for example complexity results, applications, and techniques tackling the problem. Through considering some general approach, we exhibit several cases where the problem admits a polynomial-time solution. More specifically, we present polynomial-time algorithms for the MIS problem in: + some subclasses of S2;j;kS_{2;j;k}-free graphs (thus generalizing the classical result for S1;2;kS_{1;2;k}-free graphs); + some subclasses of treektree_{k}-free graphs (thus generalizing the classical results for subclasses of P5-free graphs); + some subclasses of P7P_{7}-free graphs and S2;2;2S_{2;2;2}-free graphs; and various subclasses of graphs of bounded maximum degree, for example subcubic graphs. Our algorithms are based on various approaches. In particular, we characterize augmenting graphs in a subclass of S2;k;kS_{2;k;k}-free graphs and a subclass of S2;2;5S_{2;2;5}-free graphs. These characterizations are partly based on extensions of the concept of redundant set [125]. We also propose methods finding augmenting chains, an extension of the method in [99], and finding augmenting trees, an extension of the methods in [125]. We apply the augmenting vertex technique, originally used for P5P_{5}-free graphs or banner-free graphs, for some more general graph classes. We consider a general graph theoretical combinatorial problem, the so-called Maximum -Set problem. Two special cases of this problem, the so-called Maximum F-(Strongly) Independent Subgraph and Maximum F-Induced Subgraph, where F is a connected graph set, are considered. The complexity of the Maximum F-(Strongly) Independent Subgraph problem is revised and the NP-hardness of the Maximum F-Induced Subgraph problem is proved. We also extend the augmenting approach to apply it for the general Maximum Π -Set problem. We revise on classical graph transformations and give two unified views based on pseudo-boolean functions and αff-redundant vertex. We also make extensive uses of α-redundant vertices, originally mainly used for P5P_{5}-free graphs, to give polynomial solutions for some subclasses of S2;2;2S_{2;2;2}-free graphs and treektree_{k}-free graphs. We consider some classical sequential greedy heuristic methods. We also combine classical algorithms with αff-redundant vertices to have new strategies of choosing the next vertex in greedy methods. Some aspects of the algorithms, for example forbidden induced subgraph sets and worst case results, are also considered. Finally, we restrict our attention on graphs of bounded maximum degree and subcubic graphs. Then by using some techniques, for example ff-redundant vertex, clique separator, and arguments based on distance, we general these results for some subclasses of Si;j;kS_{i;j;k}-free subcubic graphs
    corecore