5,855 research outputs found

    Computing maximum cliques in B2B_2-EPG graphs

    Full text link
    EPG graphs, introduced by Golumbic et al. in 2009, are edge-intersection graphs of paths on an orthogonal grid. The class BkB_k-EPG is the subclass of EPG graphs where the path on the grid associated to each vertex has at most kk bends. Epstein et al. showed in 2013 that computing a maximum clique in B1B_1-EPG graphs is polynomial. As remarked in [Heldt et al., 2014], when the number of bends is at least 44, the class contains 22-interval graphs for which computing a maximum clique is an NP-hard problem. The complexity status of the Maximum Clique problem remains open for B2B_2 and B3B_3-EPG graphs. In this paper, we show that we can compute a maximum clique in polynomial time in B2B_2-EPG graphs given a representation of the graph. Moreover, we show that a simple counting argument provides a 2(k+1){2(k+1)}-approximation for the coloring problem on BkB_k-EPG graphs without knowing the representation of the graph. It generalizes a result of [Epstein et al, 2013] on B1B_1-EPG graphs (where the representation was needed)

    Separability and Vertex Ordering of Graphs

    Get PDF
    Many graph optimization problems, such as finding an optimal coloring, or a largest clique, can be solved by a divide-and-conquer approach. One such well-known technique is decomposition by clique separators where a graph is decomposed into special induced subgraphs along their clique separators. While the most common practice of this method employs minimal clique separators, in this work we study other variations as well. We strive to characterize their structure and in particular the bound on the number of atoms. In fact, we strengthen the known bounds for the general clique cutset decomposition and the minimal clique separator decomposition. Graph ordering is the arrangement of a graph’s vertices according to a certain logic and is a useful tool in optimization problems. Special types of vertices are often recognized in graph classes, for instance it is well-known every chordal graph contains a simplicial vertex. Vertex-ordering, based on such properties, have originated many linear time algorithms. We propose to define a new family named SE-Class such that every graph belonging to this family inherently contains a simplicial extreme, that is a vertex which is either simplicial or has exactly two neighbors which are non-adjacent. Our family lends itself to an ordering based on simplicial extreme vertices (named SEO) which we demonstrate to be advantageous for the coloring and maximum clique problems. In addition, we examine the relation of SE-Class to the family of (Even-Hole, Kite)-free graphs and show a linear time generation of SEO for (Even-Hole, Diamond, Claw)-free graphs. We showcase the applications of those two core tools, namely clique-based decomposition and vertex ordering, on the (Even-Hole, Kite)-free family

    The Use of an Exact Algorithm within a Tabu Search Maximum Clique Algorithm

    Get PDF
    Let G = (V, E) be an undirected graph with vertex set V and edge set E. A clique C of G is a subset of the vertices of V with every pair of vertices of C adjacent. A maximum clique is a clique with the maximum number of vertices. A tabu search algorithm for the maximum clique problem that uses an exact algorithm on subproblems is presented. The exact algorithm uses a graph coloring upper bound for pruning, and the best such algorithm to use in this context is considered. The final tabu search algorithm successfully finds the optimal or best known solution for all standard benchmarks considered. It is compared with a state-of-the-art algorithm that does not use exact search. It is slower to find the known optimal solution for most instances but is faster for five instances and finds a larger clique for two instances

    On Split-Coloring Problems

    Get PDF
    We study a new coloring concept which generalizes the classical vertex coloring problem in a graph by extending the notion of stable sets to split graphs. First of all, we propose the packing problem of finding the split graph of maximum size where a split graph is a graph G = (V,E) in which the vertex set V can be partitioned into a clique K and a stable set S. No condition is imposed on the edges linking vertices in S to the vertices in K. This maximum split graph problem gives rise to an associated partitioning problem that we call the split-coloring problem. Given a graph, the objective is to cover all his vertices by a least number of split graphs. Definitions related to this new problem are introduced. We mention some polynomially solvable cases and describe open questions on this are
    • …
    corecore