6,954 research outputs found

    Fourier sparsity, spectral norm, and the Log-rank conjecture

    Full text link
    We study Boolean functions with sparse Fourier coefficients or small spectral norm, and show their applications to the Log-rank Conjecture for XOR functions f(x\oplus y) --- a fairly large class of functions including well studied ones such as Equality and Hamming Distance. The rank of the communication matrix M_f for such functions is exactly the Fourier sparsity of f. Let d be the F2-degree of f and D^CC(f) stand for the deterministic communication complexity for f(x\oplus y). We show that 1. D^CC(f) = O(2^{d^2/2} log^{d-2} ||\hat f||_1). In particular, the Log-rank conjecture holds for XOR functions with constant F2-degree. 2. D^CC(f) = O(d ||\hat f||_1) = O(\sqrt{rank(M_f)}\logrank(M_f)). We obtain our results through a degree-reduction protocol based on a variant of polynomial rank, and actually conjecture that its communication cost is already \log^{O(1)}rank(M_f). The above bounds also hold for the parity decision tree complexity of f, a measure that is no less than the communication complexity (up to a factor of 2). Along the way we also show several structural results about Boolean functions with small F2-degree or small spectral norm, which could be of independent interest. For functions f with constant F2-degree: 1) f can be written as the summation of quasi-polynomially many indicator functions of subspaces with \pm-signs, improving the previous doubly exponential upper bound by Green and Sanders; 2) being sparse in Fourier domain is polynomially equivalent to having a small parity decision tree complexity; 3) f depends only on polylog||\hat f||_1 linear functions of input variables. For functions f with small spectral norm: 1) there is an affine subspace with co-dimension O(||\hat f||_1) on which f is a constant; 2) there is a parity decision tree with depth O(||\hat f||_1 log ||\hat f||_0).Comment: v2: Corollary 31 of v1 removed because of a bug in the proof. (Other results not affected.

    Quantum entanglement, sum of squares, and the log rank conjecture

    Full text link
    For every ϵ>0\epsilon>0, we give an exp(O~(n/ϵ2))\exp(\tilde{O}(\sqrt{n}/\epsilon^2))-time algorithm for the 11 vs 1ϵ1-\epsilon \emph{Best Separable State (BSS)} problem of distinguishing, given an n2×n2n^2\times n^2 matrix M\mathcal{M} corresponding to a quantum measurement, between the case that there is a separable (i.e., non-entangled) state ρ\rho that M\mathcal{M} accepts with probability 11, and the case that every separable state is accepted with probability at most 1ϵ1-\epsilon. Equivalently, our algorithm takes the description of a subspace WFn2\mathcal{W} \subseteq \mathbb{F}^{n^2} (where F\mathbb{F} can be either the real or complex field) and distinguishes between the case that W\mathcal{W} contains a rank one matrix, and the case that every rank one matrix is at least ϵ\epsilon far (in 2\ell_2 distance) from W\mathcal{W}. To the best of our knowledge, this is the first improvement over the brute-force exp(n)\exp(n)-time algorithm for this problem. Our algorithm is based on the \emph{sum-of-squares} hierarchy and its analysis is inspired by Lovett's proof (STOC '14, JACM '16) that the communication complexity of every rank-nn Boolean matrix is bounded by O~(n)\tilde{O}(\sqrt{n}).Comment: 23 pages + 1 title-page + 1 table-of-content

    Derandomized Graph Product Results using the Low Degree Long Code

    Get PDF
    In this paper, we address the question of whether the recent derandomization results obtained by the use of the low-degree long code can be extended to other product settings. We consider two settings: (1) the graph product results of Alon, Dinur, Friedgut and Sudakov [GAFA, 2004] and (2) the "majority is stablest" type of result obtained by Dinur, Mossel and Regev [SICOMP, 2009] and Dinur and Shinkar [In Proc. APPROX, 2010] while studying the hardness of approximate graph coloring. In our first result, we show that there exists a considerably smaller subgraph of K3RK_3^{\otimes R} which exhibits the following property (shown for K3RK_3^{\otimes R} by Alon et al.): independent sets close in size to the maximum independent set are well approximated by dictators. The "majority is stablest" type of result of Dinur et al. and Dinur and Shinkar shows that if there exist two sets of vertices AA and BB in K3RK_3^{\otimes R} with very few edges with one endpoint in AA and another in BB, then it must be the case that the two sets AA and BB share a single influential coordinate. In our second result, we show that a similar "majority is stablest" statement holds good for a considerably smaller subgraph of K3RK_3^{\otimes R}. Furthermore using this result, we give a more efficient reduction from Unique Games to the graph coloring problem, leading to improved hardness of approximation results for coloring

    Sensitivity Conjecture and Log-rank Conjecture for functions with small alternating numbers

    Get PDF
    The Sensitivity Conjecture and the Log-rank Conjecture are among the most important and challenging problems in concrete complexity. Incidentally, the Sensitivity Conjecture is known to hold for monotone functions, and so is the Log-rank Conjecture for f(xy)f(x \wedge y) and f(xy)f(x\oplus y) with monotone functions ff, where \wedge and \oplus are bit-wise AND and XOR, respectively. In this paper, we extend these results to functions ff which alternate values for a relatively small number of times on any monotone path from 0n0^n to 1n1^n. These deepen our understandings of the two conjectures, and contribute to the recent line of research on functions with small alternating numbers

    Likelihood Geometry

    Full text link
    We study the critical points of monomial functions over an algebraic subset of the probability simplex. The number of critical points on the Zariski closure is a topological invariant of that embedded projective variety, known as its maximum likelihood degree. We present an introduction to this theory and its statistical motivations. Many favorite objects from combinatorial algebraic geometry are featured: toric varieties, A-discriminants, hyperplane arrangements, Grassmannians, and determinantal varieties. Several new results are included, especially on the likelihood correspondence and its bidegree. These notes were written for the second author's lectures at the CIME-CIRM summer course on Combinatorial Algebraic Geometry at Levico Terme in June 2013.Comment: 45 pages; minor changes and addition

    Small ball probability, Inverse theorems, and applications

    Full text link
    Let ξ\xi be a real random variable with mean zero and variance one and A=a1,...,anA={a_1,...,a_n} be a multi-set in Rd\R^d. The random sum SA:=a1ξ1+...+anξnS_A := a_1 \xi_1 + ... + a_n \xi_n where ξi\xi_i are iid copies of ξ\xi is of fundamental importance in probability and its applications. We discuss the small ball problem, the aim of which is to estimate the maximum probability that SAS_A belongs to a ball with given small radius, following the discovery made by Littlewood-Offord and Erdos almost 70 years ago. We will mainly focus on recent developments that characterize the structure of those sets AA where the small ball probability is relatively large. Applications of these results include full solutions or significant progresses of many open problems in different areas.Comment: 47 page
    corecore