191 research outputs found

    The limits of LoRaWAN in event-triggered wireless networked control systems

    Get PDF
    Wireless sensors and actuators offer benefits to large industrial control systems. The absence of wires for communication reduces the deployment cost, maintenance effort, and provides greater flexibility for sensor and actuator location and system architecture. These benefits come at a cost of a high probability of communication delay or message loss due to the unreliability of radio-based communication. This unreliability poses a challenge to contemporary control systems that are designed with the assumption of instantaneous and reliable communication. Wireless sensors and actuators create a paradigm shift in engineering energy-efficient control schemes coupled with robust communication schemes that can maintain system stability in the face of unreliable communication. This paper investigates the feasibility of using the low-power wide-area communication protocol LoRaWAN with an event-triggered control scheme through modelling in Matlab. We show that LoRaWAN is capable of meeting the maximum delay and message loss requirements of an event-triggered controller for certain classes of applications. We also expose the limitation in the use of LoRaWAN when message size or communication range requirements increase or the underlying physical system is exposed to significant external disturbances

    Distributed scheduling algorithms for LoRa-based wide area cyber-physical systems

    Get PDF
    Low Power Wide Area Networks (LPWAN) are a class of wireless communication protocols that work over long distances, consume low power and support low datarates. LPWANs have been designed for monitoring applications, with sparse communication from nodes to servers and sparser from servers to nodes. Inspite of their initial design, LPWANs have the potential to target applications with higher and stricter requirements like those of Cyber-Physical Systems (CPS). Due to their long-range capabilities, LPWANs can specifically target CPS applications distributed over a wide-area, which is referred to as Wide-Area CPS (WA-CPS). Augmenting WA-CPSs with wireless communication would allow for more flexible, low-cost and easily maintainable deployment. However, wireless communications come with problems like reduced reliability and unpredictable latencies, making them harder to use for CPSs. With this intention, this thesis explores the use of LPWANs, specifically LoRa, to meet the communication and control requirements of WA-CPSs. The thesis focuses on using LoRa due to its high resilience to noise, several communication parameters to choose from and a freely modifiable communication stack and servers making it ideal for research and deployment. However, LoRaWAN suffers from low reliability due to its ALOHA channel access method. The thesis posits that "Distributed algorithms would increase the protocol's reliability allowing it to meet the requirements of WA-CPSs". Three different application scenarios are explored in this thesis that leverage unexplored aspects of LoRa to meet their requirements. The application scenarios are delay-tolerant vehicular networks, multi-stakeholder WA-CPS deployments and water distribution networks. The systems use novel algorithms to facilitate communication between the nodes and gateways to ensure a highly reliable system. The results outperform state-of-art techniques to prove that LoRa is currently under-utilised and can be used for CPS applications.Open Acces

    Selective Jamming of LoRaWAN using Commodity Hardware

    Full text link
    Long range, low power networks are rapidly gaining acceptance in the Internet of Things (IoT) due to their ability to economically support long-range sensing and control applications while providing multi-year battery life. LoRa is a key example of this new class of network and is being deployed at large scale in several countries worldwide. As these networks move out of the lab and into the real world, they expose a large cyber-physical attack surface. Securing these networks is therefore both critical and urgent. This paper highlights security issues in LoRa and LoRaWAN that arise due to the choice of a robust but slow modulation type in the protocol. We exploit these issues to develop a suite of practical attacks based around selective jamming. These attacks are conducted and evaluated using commodity hardware. The paper concludes by suggesting a range of countermeasures that can be used to mitigate the attacks.Comment: Mobiquitous 2017, November 7-10, 2017, Melbourne, VIC, Australi

    Effect of event-based sensing on IoT node power efficiency. Case study: air quality monitoring in smart cities

    Get PDF
    The predicted growth of urban populations has prompted researchers and administrations to improve services provided to citizens. At the heart of these services are wireless networks of multiple different sensors supported by the Internet of Things. The main purpose of these networks is to provide sufficient information to achieve more intelligent transport, energy supplies, social services, public environments (indoor and outdoor) and security, etc. Two major technological advances would improve such networks in Smart Cities: efficient communication between nodes and a reduction in each node's power consumption. The present paper analyses how event-based sampling techniques can address both challenges. We describe the fundamentals of the triggering mechanisms that characterise Send-on-Delta, Send-on-Area, Send-on-Energy and Send-on-Prediction techniques to restrict the number of transmissions between the sensor node and the supervision or monitoring node without degrading tracking of the sensed variable. At the same time, these aperiodic techniques reduce consumption by sensor node electronic devices. In order to quantify the energy savings, we evaluate the increase achieved in the average lifetime of sensor node batteries. The data provided by Smart City tools in the city of Santander (Spain) were selected to conduct a case study of the main pollutants that determine city air quality: SO2 , NO2 , O3 and PM10 . We conclude that event-based sensing techniques can yield up to 50% savings in sensor node consumption compared to classical periodic sensing techniques

    Control communication co-design for wide area cyber-physical systems

    Get PDF
    Wide Area Cyber-Physical Systems (WA-CPSs) are a class of control systems that integrate low-powered sensors, heterogeneous actuators and computer controllers into large infrastructure that span multi-kilometre distances. Current wireless communication technologies are incapable of meeting the communication requirements of range and bounded delays needed for the control of WA-CPSs. To solve this problem, we use a Control-Communication Co-design approach for WA-CPSs, that we refer to as the C^3 approach, to design a novel Low-Power Wide Area (LPWA) MAC protocol called Ctrl-MAC and its associated event-triggered controller that can guarantee the closed-loop stability of a WA-CPS. This is the first paper to show that LPWA wireless communication technologies can support the control of WA-CPSs. LPWA technologies are designed to support one-way communication for monitoring and are not appropriate for control. We present this work using an example of a water distribution network application which we evaluate both through a co-simulator (modelling both physical and cyber subsystems) and testbed deployments. Our evaluation demonstrates full control stability, with up to 50% better packet delivery ratios and 80% less average end-to-end delays when compared to a state of the art LPWA technology. We also evaluate our scheme against an idealised, wired, centralised, control architecture and show that the controller maintains stability and the overshoots remain within bounds

    Industrial networks and IIoT: Now and future trends

    Get PDF
    Connectivity is the one word summary for Industry 4.0 revolution. The importance of Internet of Things (IoT) and Industrial IoT (IIoT) have been increased dramatically with the rise of industrialization and industry 4.0. As new opportunities bring their own challenges, with the massive interconnected devices of the IIoT, cyber security of those networks and privacy of their users have become an important aspect. Specifically, intrusion detection for industrial networks (IIoT) has great importance. For instance, it is a key factor in improving the safe operation of the smart grid systems yet protecting the privacy of the consumers at the same time. In the same manner, data streaming is a valid option when the analysis is to be pushed from the cloud to the fog for industrial networks to provide agile response, since it brings the advantage of fast action on intrusion detection and also can buy time for intrusion mitigation. In order to dive deep in industrial networks, basic ground needs to be settled. Hence, this chapter serves in this manner, by presenting basic and emerging technologies along with ideas and discussions: First, an introduction of semiconductor evolution is provided along with the up-to-date hi-tech wired/wireless communication solutions for industrial networks. This is followed by a thorough representation of future trends in industrial environments. More importantly, enabling technologies for industrial networks is also presented. Finally, the chapter is concluded with a summary of the presentations along with future projections of IIoT networks

    Improving efficiency, usability and scalability in a secure, resource-constrained web of things

    Get PDF

    Towards the efficient use of LoRa for wireless sensor networks

    Get PDF
    Since their inception in 1998 with the Smart Dust Project from University of Berkeley, Wireless Sensor Networks (WSNs) had a tremendous impact on both science and society, influencing many (new) research fields, like Cyber-physical System (CPS), Machine to Machine (M2M), and Internet of Things (IoT). In over two decades, WSN researchers have delivered a wide-range of hardware, communication protocols, operating systems, and applications, to deal with the now classic problems of resourceconstrained devices, limited energy sources, and harsh communication environments. However, WSN research happened mostly on the same kind of hardware. With wireless communication and embedded hardware evolving, there are new opportunities to resolve the long standing issues of scaling, deploying, and maintaining a WSN. To this end, we explore in this work the most recent advances in low-power, longrange wireless communication, and the new challenges these new wireless communication techniques introduce. Specifically, we focus on the most promising such technology: LoRa. LoRa is a novel low-power, long-range communication technology, which promises a single-hop network with millions of sensor nodes. Using practical experiments, we evaluate the unique properties of LoRa, like orthogonal spreading factors, nondestructive concurrent transmissions, and carrier activity detection. Utilising these unique properties, we build a novel TDMA-style multi-hop Medium Access Control (MAC) protocol called LoRaBlink. Based on empirical results, we develop a communication model and simulator called LoRaSim to explore the scalability of a LoRa network. We conclude that, in its current deployment, LoRa cannot support the scale it is envisioned to operate at. One way to improve this scalability issue is Adaptive Data Rate (ADR). We develop two ADR protocols, Probing and Optimistic Probing, and compare them with the de facto standard ADR protocol used in the crowdsourced TTN LoRaWAN network. We demonstrate that our algorithms are much more responsive, energy efficient, and able to reach a more efficient configuration quicker, though reaching a suboptimal configuration for poor links, which is offset by the savings caused by the convergence speed. Overall, this work provides theoretical and empirical proofs that LoRa can tackle some of the long standing problems within WSN. We envision that future work, in particular on ADR and MAC protocols for LoRa and other low-power, long-range communication technologies, will help push these new communication technologies to main-stream status in WSNs
    • …
    corecore