101,437 research outputs found

    The Virtual Storyteller: story generation by simulation

    Get PDF
    The Virtual Storyteller is a multi-agent framework that generates stories based on a concept called emergent narrative. In this paper, we describe the motivation and approach of the Virtual Storyteller, and give an overview of the computational processes involved in the story generation process. We also discuss some of the challenges posed by our chosen approach

    Player agency in interactive narrative: audience, actor & author

    Get PDF
    The question motivating this review paper is, how can computer-based interactive narrative be used as a constructivist learn- ing activity? The paper proposes that player agency can be used to link interactive narrative to learner agency in constructivist theory, and to classify approaches to interactive narrative. The traditional question driving research in interactive narrative is, ‘how can an in- teractive narrative deal with a high degree of player agency, while maintaining a coherent and well-formed narrative?’ This question derives from an Aristotelian approach to interactive narrative that, as the question shows, is inherently antagonistic to player agency. Within this approach, player agency must be restricted and manip- ulated to maintain the narrative. Two alternative approaches based on Brecht’s Epic Theatre and Boal’s Theatre of the Oppressed are reviewed. If a Boalian approach to interactive narrative is taken the conflict between narrative and player agency dissolves. The question that emerges from this approach is quite different from the traditional question above, and presents a more useful approach to applying in- teractive narrative as a constructivist learning activity

    What does semantic tiling of the cortex tell us about semantics?

    Get PDF
    Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) features and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions

    Memory Networks

    Full text link
    We describe a new class of learning models called memory networks. Memory networks reason with inference components combined with a long-term memory component; they learn how to use these jointly. The long-term memory can be read and written to, with the goal of using it for prediction. We investigate these models in the context of question answering (QA) where the long-term memory effectively acts as a (dynamic) knowledge base, and the output is a textual response. We evaluate them on a large-scale QA task, and a smaller, but more complex, toy task generated from a simulated world. In the latter, we show the reasoning power of such models by chaining multiple supporting sentences to answer questions that require understanding the intension of verbs

    Comprensión de textos como una situación de solución de problemas

    Get PDF
    La investigación en la comprensión de textos ha dado detalles de cómo las características del texto y los procesos cognitivos interactúan con el fin de consituir la comprensión y generar significado. Sin embargo, no existe un vínculo explícito entre los procesos cognitivos desplegados durante la comprensión de textos y su lugar en la cognición de orden superior, como en la resolución de problemas. El propósito de este trabajo es proponer un modelo cognitivo en el que la comprensión de textos se hace similar a una resolución de problemas y la situación que se basa en la investigación actual sobre los procesos cognitivos conocidos como la generación de la inferencia, la memoria y las simulaciones. La característica clave del modelo es que incluye explícitamente la formulación de las preguntas como un componente que aumenta la potencia de representación. Otras características del modelo se especifican y sus extensiones a la investigación básica y en la comprensión de textos y de orden superior los procesos cognitivos se describen aplican.Research in text comprehension has provided details as to how text features and cognitive processes interact in order to build comprehension and generate meaning. However, there is no explicit link between the cognitive processes deployed during text comprehension and their place in higher-order cognition, as in problem solving. The purpose of this paper is to propose a cognitive model in which text comprehension is made analogous to a problem solving situation and that relies on current research on well-known cognitive processes such as inference generation, memory, and simulations. The key characteristic of the model is that it explicitly includes the formulation of questions as a component that boosts representational power. Other characteristics of the model are specified and its extensions to basic and applied research in text comprehension and higher-order cognitive processes are outlined.Fil: Marmolejo Ramos, Fernando. University of Adelaide; AustraliaFil: Yomha Cevasco, Jazmin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Learning in a Landscape: Simulation-building as Reflexive Intervention

    Full text link
    This article makes a dual contribution to scholarship in science and technology studies (STS) on simulation-building. It both documents a specific simulation-building project, and demonstrates a concrete contribution to interdisciplinary work of STS insights. The article analyses the struggles that arise in the course of determining what counts as theory, as model and even as a simulation. Such debates are especially decisive when working across disciplinary boundaries, and their resolution is an important part of the work involved in building simulations. In particular, we show how ontological arguments about the value of simulations tend to determine the direction of simulation-building. This dynamic makes it difficult to maintain an interest in the heterogeneity of simulations and a view of simulations as unfolding scientific objects. As an outcome of our analysis of the process and reflections about interdisciplinary work around simulations, we propose a chart, as a tool to facilitate discussions about simulations. This chart can be a means to create common ground among actors in a simulation-building project, and a support for discussions that address other features of simulations besides their ontological status. Rather than foregrounding the chart's classificatory potential, we stress its (past and potential) role in discussing and reflecting on simulation-building as interdisciplinary endeavor. This chart is a concrete instance of the kinds of contributions that STS can make to better, more reflexive practice of simulation-building.Comment: 37 page
    corecore