5,712 research outputs found

    Entropic uncertainty measure for fluctuations in two-level electron-phonon models

    Full text link
    Two-level electron-phonon systems with reflection symmetry linearly coupled to one or two phonon modes (exciton and E⊗(b1+b2)\otimes(b_1+b_2) Jahn-Teller model) exhibit strong enhancement of quantum fluctuations of the phonon coordinates and momenta due to the complex interplay of quantum fluctuations and nonlinearities inherent to the models. We show that for the complex correlated quantum fluctuations of the anisotropic two-level systems the Shannon entropies of phonon coordinate and momentum and their sum yield their proper global description. On the other hand, the variance measures of the Heisenberg uncertainties suffer from several shortcomings to provide proper description of the fluctuations. Wave functions, related entropies and variances were determined by direct numerical simulations. Illustrative variational calculations were performed to demonstrate the effect on an analytically tractable exciton model.Comment: 14 pages, 10 figs, published in Eur.Phys.J 38 B (2004) 25-3

    A Variational Method in Out of Equilibrium Physical Systems

    Full text link
    A variational principle is further developed for out of equilibrium dynamical systems by using the concept of maximum entropy. With this new formulation it is obtained a set of two first-order differential equations, revealing the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. In particular, it is obtained an extended equation of motion for a rotating dynamical system, from where it emerges a kind of topological torsion current of the form ϵijkAjωk\epsilon_{ijk} A_j \omega_k, with AjA_j and ωk\omega_k denoting components of the vector potential (gravitational or/and electromagnetic) and ω\omega is the angular velocity of the accelerated frame. In addition, it is derived a special form of Umov-Poynting's theorem for rotating gravito-electromagnetic systems, and obtained a general condition of equilibrium for a rotating plasma. The variational method is then applied to clarify the working mechanism of some particular devices, such as the Bennett pinch and vacuum arcs, to calculate the power extraction from an hurricane, and to discuss the effect of transport angular momentum on the radiactive heating of planetary atmospheres. This development is seen to be advantageous and opens options for systematic improvements.Comment: 22 pages, 1 figure, submitted to review, added one referenc

    Polyelectrolyte chains in poor solvent. A variational description of necklace formation

    Full text link
    We study the properties of polyelectrolyte chains under different solvent conditions, using a variational technique. The free energy and the conformational properties of a polyelectrolyte chain are studied minimizing the free energy FNF_N, depending on N(N−1)/2N(N-1)/2 trial probabilities that characterize the conformation of the chain. The Gaussian approximation is considered for a ring of length 24<N<2162^4<N<2^{16} and for an open chain of length 24<N<292^4<N<2^9 in poor and theta solvent conditions, including a Coulomb repulsion between the monomers. In theta solvent conditions the blob size is measured and found in agreement with scaling theory, including charge depletion effects, expected for the case of an open chain. In poor solvent conditions, a globule instability, driven by electrostatic repulsion, is observed. We notice also inhomogeneous behavior of the monomer--monomer correlation function, reminiscence of necklace formation in poor solvent polyelectrolyte solutions. A global phase diagram in terms of solvent quality and inverse Bjerrum length is presented.Comment: submitted to EPJE (soft matter

    A sticky business: the status of the conjectured viscosity/entropy density bound

    Full text link
    There have been a number of forms of a conjecture that there is a universal lower bound on the ratio, eta/s, of the shear viscosity, eta, to entropy density, s, with several different domains of validity. We examine the various forms of the conjecture. We argue that a number of variants of the conjecture are not viable due to the existence of theoretically consistent counterexamples. We also note that much of the evidence in favor of a bound does not apply to the variants which have not yet been ruled out.Comment: 23 pages, 4 figures, added references, corrected typos, added subsection in response to Son's comments in arXiv:0709.465

    Entanglement entropy for the long range Ising chain

    Full text link
    We consider the Ising model in a transverse field with long-range antiferromagnetic interactions that decay as a power law with their distance. We study both the phase diagram and the entanglement properties as a function of the exponent of the interaction. The phase diagram can be used as a guide for future experiments with trapped ions. We find two gapped phases, one dominated by the transverse field, exhibiting quasi long range order, and one dominated by the long range interaction, with long range N\'eel ordered ground states. We determine the location of the quantum critical points separating those two phases. We determine their critical exponents and central-charges. In the phase with quasi long range order the ground states exhibit exotic corrections to the area law for the entanglement entropy coexisting with gapped entanglement spectra.Comment: 5 pages, all comments welcom

    Theory of polyzwitterion conformations

    Full text link
    Conformational characteristics of polyzwitterionic molecules in aqueous solutions are investigated using the variational method. Analytical relations are derived for the radius of gyration of a single polyzwitterionic chain as a function of the chain length, electrostatic interaction strength, added salt concentration, dipole moment and degree of ionization of the zwitterionic monomers. In the absence of the small ions (counterions and coions) near the polyzwitterionic chain, attractive dipole-dipole interactions are shown to induce a collapse of the polyzwitterionic chain. However, in the presence of the small ions, the radius of gyration is shown to be an interplay of the screening of the electrostatic interactions and the counterion adsorption on the zwitterionic sites. In addition to the well-known Debye-Huckel screening of the charge-charge interactions, screening of the charge-dipole and dipole-dipole interactions are found to play important roles in determining the size of the chain. Functional forms for the screened charge-dipole and dipole-dipole interaction potentials are presented. Furthermore, counterion adsorption on the zwitterionic monomers is predicted to be asymmetric depending on the nature of the added salt and the zwitterionic groups. Qualitative remarks regarding the solubility of these molecules in aqueous solutions along with the classical "anti-polyelectrolyte" effect (increase in the solubility in water with the addition of salt) are presented.Comment: To be appeared in J. Chem. Phy
    • …
    corecore