104,826 research outputs found

    Photothermal effects in ultra-precisely stabilized tunable microcavities

    Full text link
    We study the mechanical stability of a tunable high-finesse microcavity under ambient conditions and investigate light-induced effects that can both suppress and excite mechanical fluctuations. As an enabling step, we demonstrate the ultra-precise electronic stabilization of a microcavity. We then show that photothermal mirror expansion can provide high-bandwidth feedback and improve cavity stability by almost two orders of magnitude. At high intracavity power, we observe self-oscillations of mechanical resonances of the cavity. We explain the observations by a dynamic photothermal instability, leading to parametric driving of mechanical motion. For an optimized combination of electronic and photothermal stabilization, we achieve a feedback bandwidth of 500 500\,kHz and a noise level of 1.1×10−13 1.1 \times 10^{-13}\,m rms

    Single- and double-vortex vector solitons in self-focusing nonlinear media

    Full text link
    We study two-component spatial optical solitons carrying an angular momentum and propagating in a self-focusing saturable nonlinear medium. When one of the components is small, such vector solitons can be viewed as a self-trapped vortex beam that guides either the fundamental or first-order guided mode, and they are classified as single- and double-vortex vector solitons. For such composite vortex beams, we demonstrate that a large-amplitude guided mode can stabilize the ring-like vortex beam which usually decays due to azimuthal modulational instability. We identify different types of these vector vortex solitons and demonstrate both vortex bistability and mutual stabilization effect.Comment: 7 pages, 13 figure

    A note on oil dependence and economic instability

    Get PDF
    We show that dependence on foreign energy can increase economic instability by raising the likelihood of equilibrium indeterminacy, hence making fluctuations driven by self-fulfilling expectations easier to occur. This is demonstrated in a standard neoclassical growth model. Calibration exercises, based on the estimated share of imported energy in production for several countries, show that the degree of reliance on foreign energy for many countries can easily make an otherwise determinate and stable economy indeterminate and unstable.Petroleum industry and trade ; Economic stabilization

    On the effect of the thermal gas component to the stability of vortices in trapped Bose-Einstein condensates

    Full text link
    We study the stability of vortices in trapped single-component Bose-Einstein condensates within self-consistent mean-field theories--especially we consider the Hartree-Fock-Bogoliubov-Popov theory and its recently proposed gapless extensions. It is shown that for sufficiently repulsively interacting systems the anomalous negative-energy modes related to vortex instabilities are lifted to positive energies due to partial filling of the vortex core with noncondensed gas. Such a behavior implies that within these theories the vortex states are eventually stable against transfer of condensate matter to the anomalous core modes. This self-stabilization of vortices, shown to occur under very general circumstances, is contrasted to the predictions of the non-self-consistent Bogoliubov approximation, which is known to exhibit anomalous modes for all vortex configurations and thus implying instability of these states. In addition, the shortcomings of these approximations in describing the properties of vortices are analysed, and the need of a self-consistent theory taking properly into account the coupled dynamics of the condensate and the noncondensate atoms is emphasized.Comment: 8 page

    Stabilizing Inter-Domain Routing in the Internet

    Full text link
    This paper reports the first self-stabilizing Border Gateway Protocol (BGP). BGP is the standard inter-domain routing protocol in the Internet. Self-stabilization is a technique to tolerate arbitrary transient faults. The routing instability in the Internet can occur due to errors in configuring the routing data structures, the routing policies, transient physical and data link problems, software bugs, and memory corruption. This instability can increase the network latency, slow down the convergence of the routing data structures, and can also cause the partitioning of networks. Most of the previous studies concentrated on routing policies to achieve the convergence of BGP while the oscillations due to transient faults were ignored. The purpose of self-stabilizing BGP is to solve the routing instability problem when this instability results from transient failures. The selfstabilizing BGP presented here provides a way to detect and automatically recover from this type of faults. Our protocol is combined with an existing protocol to make it resilient to policy conflicts as well

    Stable vortex solitons in nonlocal self-focusing nonlinear media

    No full text
    We reveal that spatially localized vortex solitons become stable in self-focusing nonlinear media when the vortex symmetry-breaking azimuthal instability is eliminated by a nonlocal nonlinear response. We study the main properties of different types of vortex beams and discuss the physical mechanism of the vortex stabilization in spatially nonlocal nonlinear media

    The Cellular Burning Regime in Type Ia Supernova Explosions - I. Flame Propagation into Quiescent Fuel

    Full text link
    We present a numerical investigation of the cellular burning regime in Type Ia supernova explosions. This regime holds at small scales (i.e. below the Gibson scale), which are unresolved in large-scale Type Ia supernova simulations. The fundamental effects that dominate the flame evolution here are the Landau-Darrieus instability and its nonlinear stabilization, leading to a stabilization of the flame in a cellular shape. The flame propagation into quiescent fuel is investigated addressing the dependence of the simulation results on the specific parameters of the numerical setup. Furthermore, we investigate the flame stability at a range of fuel densities. This is directly connected to the questions of active turbulent combustion (a mechanism of flame destabilization and subsequent self-turbulization) and a deflagration-to-detonation transition of the flame. In our simulations we find no substantial destabilization of the flame when propagating into quiescent fuels of densities down to ~10^7 g/cm^3, corroborating fundamental assumptions of large-scale SN Ia explosion models. For these models, however, we suggest an increased lower cutoff for the flame propagation velocity to take the cellular burning regime into account.Comment: 12 pages, 2 tables, 10 figures, resolution of figures degraded due to archive file size restrictions, submitted to A&
    • …
    corecore