294,272 research outputs found

    Human Swarm Interaction: An Experimental Study of Two Types of Interaction with Foraging Swarms

    Get PDF
    In this paper we present the first study of human-swarm interaction comparing two fundamental types of interaction, coined intermittent and environmental. These types are exemplified by two control methods, selection and beacon control, made available to a human operator to control a foraging swarm of robots. Selection and beacon control differ with respect to their temporal and spatial influence on the swarm and enable an operator to generate different strategies from the basic behaviors of the swarm. Selection control requires an active selection of groups of robots while beacon control exerts an influence on nearby robots within a set range. Both control methods are implemented in a testbed in which operators solve an information foraging problem by utilizing a set of swarm behaviors. The robotic swarm has only local communication and sensing capabilities. The number of robots in the swarm range from 50 to 200. Operator performance for each control method is compared in a series of missions in different environments with no obstacles up to cluttered and structured obstacles. In addition, performance is compared to simple and advanced autonomous swarms. Thirty-two participants were recruited for participation in the study. Autonomous swarm algorithms were tested in repeated simulations. Our results showed that selection control scales better to larger swarms and generally outperforms beacon control. Operators utilized different swarm behaviors with different frequency across control methods, suggesting an adaptation to different strategies induced by choice of control method. Simple autonomous swarms outperformed human operators in open environments, but operators adapted better to complex environments with obstacles. Human controlled swarms fell short of task-specific benchmarks under all conditions. Our results reinforce the importance of understanding and choosing appropriate types of human-swarm interaction when designing swarm systems, in addition to choosing appropriate swarm behaviors

    Browsing through 3D representations of unstructured picture collections: an empirical study

    Get PDF
    The paper presents a 3D interactive representation of fairly large picture collections which facilitates browsing through unstructured sets of icons or pictures. Implementation of this representation implies choosing between two visualization strategies: users may either manipulate the view (OV) or be immersed in it (IV). The paper first presents this representation, then describes an empirical study (17 participants) aimed at assessing the utility and usability of each view. Subjective judgements in questionnaires and debriefings were varied: 7 participants preferred the IV view, 4 the OV one, and 6 could not choose between the two. Visual acuity and visual exploration strategies seem to have exerted a greater influence on participants' preferences than task performance or feeling of immersion.Comment: 4 page

    Phototaxic foraging of the archaepaddler, a hypothetical deep-sea species

    Get PDF
    An autonomous agent (animat, hypothetical animal), called the (archae) paddler, is simulated in sufficient detail to regard its simulated aquatic locomotion (paddling) as physically possible. The paddler is supposed to be a model of an animal that might exist, although it is perfectly possible to view it as a model of a robot that might be built. The agent is assumed to navigate in a simulated deep-sea environment, where it hunts autoluminescent prey. It uses a biologically inspired phototaxic foraging-strategy, while paddling in a layer just above the bottom. The advantage of this living space is that the navigation problem is essentially two-dimensional. Moreover, the deep-sea environment is physically simple (and hence easier to simulate): no significant currents, constant temperature, completely dark. A foraging performance metric is developed that circumvents the necessity to solve the travelling salesman problem. A parametric simulation study then quantifies the influence of habitat factors, such as the density of prey, and the body-geometry (e.g. placement, direction and directional selectivity of the eyes) on foraging success. Adequate performance proves to require a specific body-% geometry adapted to the habitat characteristics. In general performance degrades smoothly for modest changes of the geometric and habitat parameters, indicating that we work in a stable region of 'design space'. The parameters have to strike a compromise between on the one hand the ability to 'fixate' an attractive target, and on the other hand to 'see' as many targets at the same time as possible. One important conclusion is that simple reflex-based navigation can be surprisingly efficient. In the second place, performance in a global task (foraging) depends strongly on local parameters like visual direction-tuning, position of the eyes and paddles, etc. Behaviour and habitat 'mould' the body, and the body-geometry strongly influences performance. The resulting platform enables further testing of foraging strategies, or vision and locomotion theories stemming either from biology or from robotics

    Towards human control of robot swarms

    Get PDF
    In this paper we investigate principles of swarm control that enable a human operator to exert influence on and control large swarms of robots. We present two principles, coined selection and beacon control, that differ with respect to their temporal and spatial persistence. The former requires active selection of groups of robots while the latter exerts a passive influence on nearby robots. Both principles are implemented in a testbed in which operators exert influence on a robot swarm by switching between a set of behaviors ranging from trivial behaviors up to distributed autonomous algorithms. Performance is tested in a series of complex foraging tasks in environments with different obstacles ranging from open to cluttered and structured. The robotic swarm has only local communication and sensing capabilities with the number of robots ranging from 50 to 200. Experiments with human operators utilizing either selection or beacon control are compared with each other and to a simple autonomous swarm with regard to performance, adaptation to complex environments, and scalability to larger swarms. Our results show superior performance of autonomous swarms in open environments, of selection control in complex environments, and indicate a potential for scaling beacon control to larger swarms

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    The effect of distance on reaction time in aiming movements

    Get PDF
    Target distance affects movement duration in aiming tasks but its effect on reaction time (RT) is poorly documented. RT is a function of both preparation and initiation. Experiment 1 pre-cued movement (allowing advanced preparation) and found no influence of distance on RT. Thus, target distance does not affect initiation time. Experiment 2 removed pre-cue information and found that preparing a movement of increased distance lengthens RT. Experiment 3 explored movements to targets of cued size at non-cued distances and found size altered peak speed and movement duration but RT was influenced by distance alone. Thus, amplitude influences preparation time (for reasons other than altered duration) but not initiation time. We hypothesise that the RT distance effect might be due to the increased number of possible trajectories associated with further targets: a hypothesis that can be tested in future experiments

    Animated virtual agents to cue user attention: comparison of static and dynamic deictic cues on gaze and touch responses

    Get PDF
    This paper describes an experiment developed to study the performance of virtual agent animated cues within digital interfaces. Increasingly, agents are used in virtual environments as part of the branding process and to guide user interaction. However, the level of agent detail required to establish and enhance efficient allocation of attention remains unclear. Although complex agent motion is now possible, it is costly to implement and so should only be routinely implemented if a clear benefit can be shown. Pevious methods of assessing the effect of gaze-cueing as a solution to scene complexity have relied principally on two-dimensional static scenes and manual peripheral inputs. Two experiments were run to address the question of agent cues on human-computer interfaces. Both experiments measured the efficiency of agent cues analyzing participant responses either by gaze or by touch respectively. In the first experiment, an eye-movement recorder was used to directly assess the immediate overt allocation of attention by capturing the participant’s eyefixations following presentation of a cueing stimulus. We found that a fully animated agent could speed up user interaction with the interface. When user attention was directed using a fully animated agent cue, users responded 35% faster when compared with stepped 2-image agent cues, and 42% faster when compared with a static 1-image cue. The second experiment recorded participant responses on a touch screen using same agent cues. Analysis of touch inputs confirmed the results of gaze-experiment, where fully animated agent made shortest time response with a slight decrease on the time difference comparisons. Responses to fully animated agent were 17% and 20% faster when compared with 2-image and 1-image cue severally. These results inform techniques aimed at engaging users’ attention in complex scenes such as computer games and digital transactions within public or social interaction contexts by demonstrating the benefits of dynamic gaze and head cueing directly on the users’ eye movements and touch responses
    • …
    corecore