2,403 research outputs found

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems

    The Complexity of Rationalizing Network Formation

    Get PDF
    We study the complexity of rationalizing network formation. In this problem we fix an underlying model describing how selfish parties (the vertices) produce a graph by making individual decisions to form or not form incident edges. The model is equipped with a notion of stability (or equilibrium), and we observe a set of "snapshots" of graphs that are assumed to be stable. From this we would like to infer some unobserved data about the system: edge prices, or how much each vertex values short paths to each other vertex. We study two rationalization problems arising from the network formation model of Jackson and Wolinsky [14]. When the goal is to infer edge prices, we observe that the rationalization problem is easy. The problem remains easy even when rationalizing prices do not exist and we instead wish to find prices that maximize the stability of the system. In contrast, when the edge prices are given and the goal is instead to infer valuations of each vertex by each other vertex, we prove that the rationalization problem becomes NP-hard. Our proof exposes a close connection between rationalization problems and the Inequality-SAT (I-SAT) problem. Finally and most significantly, we prove that an approximation version of this NP-complete rationalization problem is NP-hard to approximate to within better than a 1/2 ratio. This shows that the trivial algorithm of setting everyone's valuations to infinity (which rationalizes all the edges present in the input graphs) or to zero (which rationalizes all the non-edges present in the input graphs) is the best possible assuming P ≠ NP To do this we prove a tight (1/2 + δ) -approximation hardness for a variant of I-SAT in which all coefficients are non-negative. This in turn follows from a tight hardness result for MAX-LlN_(R_+) (linear equations over the reals, with non-negative coefficients), which we prove by a (non-trivial) modification of the recent result of Guruswami and Raghavendra [10] which achieved tight hardness for this problem without the non-negativity constraint. Our technical contributions regarding the hardness of I-SAT and MAX-LIN_(R_+) may be of independent interest, given the generality of these problem

    Complexity of Discrete Energy Minimization Problems

    Full text link
    Discrete energy minimization is widely-used in computer vision and machine learning for problems such as MAP inference in graphical models. The problem, in general, is notoriously intractable, and finding the global optimal solution is known to be NP-hard. However, is it possible to approximate this problem with a reasonable ratio bound on the solution quality in polynomial time? We show in this paper that the answer is no. Specifically, we show that general energy minimization, even in the 2-label pairwise case, and planar energy minimization with three or more labels are exp-APX-complete. This finding rules out the existence of any approximation algorithm with a sub-exponential approximation ratio in the input size for these two problems, including constant factor approximations. Moreover, we collect and review the computational complexity of several subclass problems and arrange them on a complexity scale consisting of three major complexity classes -- PO, APX, and exp-APX, corresponding to problems that are solvable, approximable, and inapproximable in polynomial time. Problems in the first two complexity classes can serve as alternative tractable formulations to the inapproximable ones. This paper can help vision researchers to select an appropriate model for an application or guide them in designing new algorithms.Comment: ECCV'16 accepte

    Inapproximability of maximal strip recovery

    Get PDF
    In comparative genomic, the first step of sequence analysis is usually to decompose two or more genomes into syntenic blocks that are segments of homologous chromosomes. For the reliable recovery of syntenic blocks, noise and ambiguities in the genomic maps need to be removed first. Maximal Strip Recovery (MSR) is an optimization problem proposed by Zheng, Zhu, and Sankoff for reliably recovering syntenic blocks from genomic maps in the midst of noise and ambiguities. Given dd genomic maps as sequences of gene markers, the objective of \msr{d} is to find dd subsequences, one subsequence of each genomic map, such that the total length of syntenic blocks in these subsequences is maximized. For any constant d2d \ge 2, a polynomial-time 2d-approximation for \msr{d} was previously known. In this paper, we show that for any d2d \ge 2, \msr{d} is APX-hard, even for the most basic version of the problem in which all gene markers are distinct and appear in positive orientation in each genomic map. Moreover, we provide the first explicit lower bounds on approximating \msr{d} for all d2d \ge 2. In particular, we show that \msr{d} is NP-hard to approximate within Ω(d/logd)\Omega(d/\log d). From the other direction, we show that the previous 2d-approximation for \msr{d} can be optimized into a polynomial-time algorithm even if dd is not a constant but is part of the input. We then extend our inapproximability results to several related problems including \cmsr{d}, \gapmsr{\delta}{d}, and \gapcmsr{\delta}{d}.Comment: A preliminary version of this paper appeared in two parts in the Proceedings of the 20th International Symposium on Algorithms and Computation (ISAAC 2009) and the Proceedings of the 4th International Frontiers of Algorithmics Workshop (FAW 2010

    On largest volume simplices and sub-determinants

    Full text link
    We show that the problem of finding the simplex of largest volume in the convex hull of nn points in Qd\mathbb{Q}^d can be approximated with a factor of O(logd)d/2O(\log d)^{d/2} in polynomial time. This improves upon the previously best known approximation guarantee of d(d1)/2d^{(d-1)/2} by Khachiyan. On the other hand, we show that there exists a constant c>1c>1 such that this problem cannot be approximated with a factor of cdc^d, unless P=NPP=NP. % This improves over the 1.091.09 inapproximability that was previously known. Our hardness result holds even if n=O(d)n = O(d), in which case there exists a \bar c\,^{d}-approximation algorithm that relies on recent sampling techniques, where cˉ\bar c is again a constant. We show that similar results hold for the problem of finding the largest absolute value of a subdeterminant of a d×nd\times n matrix

    From Gap-ETH to FPT-Inapproximability: Clique, Dominating Set, and More

    Full text link
    We consider questions that arise from the intersection between the areas of polynomial-time approximation algorithms, subexponential-time algorithms, and fixed-parameter tractable algorithms. The questions, which have been asked several times (e.g., [Marx08, FGMS12, DF13]), are whether there is a non-trivial FPT-approximation algorithm for the Maximum Clique (Clique) and Minimum Dominating Set (DomSet) problems parameterized by the size of the optimal solution. In particular, letting OPT\text{OPT} be the optimum and NN be the size of the input, is there an algorithm that runs in t(OPT)poly(N)t(\text{OPT})\text{poly}(N) time and outputs a solution of size f(OPT)f(\text{OPT}), for any functions tt and ff that are independent of NN (for Clique, we want f(OPT)=ω(1)f(\text{OPT})=\omega(1))? In this paper, we show that both Clique and DomSet admit no non-trivial FPT-approximation algorithm, i.e., there is no o(OPT)o(\text{OPT})-FPT-approximation algorithm for Clique and no f(OPT)f(\text{OPT})-FPT-approximation algorithm for DomSet, for any function ff (e.g., this holds even if ff is the Ackermann function). In fact, our results imply something even stronger: The best way to solve Clique and DomSet, even approximately, is to essentially enumerate all possibilities. Our results hold under the Gap Exponential Time Hypothesis (Gap-ETH) [Dinur16, MR16], which states that no 2o(n)2^{o(n)}-time algorithm can distinguish between a satisfiable 3SAT formula and one which is not even (1ϵ)(1 - \epsilon)-satisfiable for some constant ϵ>0\epsilon > 0. Besides Clique and DomSet, we also rule out non-trivial FPT-approximation for Maximum Balanced Biclique, Maximum Subgraphs with Hereditary Properties, and Maximum Induced Matching in bipartite graphs. Additionally, we rule out ko(1)k^{o(1)}-FPT-approximation algorithm for Densest kk-Subgraph although this ratio does not yet match the trivial O(k)O(k)-approximation algorithm.Comment: 43 pages. To appear in FOCS'1

    Approximating solution structure of the Weighted Sentence Alignment problem

    Full text link
    We study the complexity of approximating solution structure of the bijective weighted sentence alignment problem of DeNero and Klein (2008). In particular, we consider the complexity of finding an alignment that has a significant overlap with an optimal alignment. We discuss ways of representing the solution for the general weighted sentence alignment as well as phrases-to-words alignment problem, and show that computing a string which agrees with the optimal sentence partition on more than half (plus an arbitrarily small polynomial fraction) positions for the phrases-to-words alignment is NP-hard. For the general weighted sentence alignment we obtain such bound from the agreement on a little over 2/3 of the bits. Additionally, we generalize the Hamming distance approximation of a solution structure to approximating it with respect to the edit distance metric, obtaining similar lower bounds

    On the Hardness and Inapproximability of Recognizing Wheeler Graphs

    Get PDF
    In recent years several compressed indexes based on variants of the Burrows-Wheeler transformation have been introduced. Some of these are used to index structures far more complex than a single string, as was originally done with the FM-index [Ferragina and Manzini, J. ACM 2005]. As such, there has been an increasing effort to better understand under which conditions such an indexing scheme is possible. This has led to the introduction of Wheeler graphs [Gagie et al., Theor. Comput. Sci., 2017]. Gagie et al. showed that de Bruijn graphs, generalized compressed suffix arrays, and several other BWT related structures can be represented as Wheeler graphs, and that Wheeler graphs can be indexed in a way which is space efficient. Hence, being able to recognize whether a given graph is a Wheeler graph, or being able to approximate a given graph by a Wheeler graph, could have numerous applications in indexing. Here we resolve the open question of whether there exists an efficient algorithm for recognizing if a given graph is a Wheeler graph. We present: - The problem of recognizing whether a given graph G=(V,E) is a Wheeler graph is NP-complete for any edge label alphabet of size sigma >= 2, even when G is a DAG. This holds even on a restricted, subset of graphs called d-NFA\u27s for d >= 5. This is in contrast to recent results demonstrating the problem can be solved in polynomial time for d-NFA\u27s where d <= 2. We also show the recognition problem can be solved in linear time for sigma =1; - There exists an 2^{e log sigma + O(n + e)} time exact algorithm where n = |V| and e = |E|. This algorithm relies on graph isomorphism being computable in strictly sub-exponential time; - We define an optimization variant of the problem called Wheeler Graph Violation, abbreviated WGV, where the aim is to remove the minimum number of edges in order to obtain a Wheeler graph. We show WGV is APX-hard, even when G is a DAG, implying there exists a constant C >= 1 for which there is no C-approximation algorithm (unless P = NP). Also, conditioned on the Unique Games Conjecture, for all C >= 1, it is NP-hard to find a C-approximation; - We define the Wheeler Subgraph problem, abbreviated WS, where the aim is to find the largest subgraph which is a Wheeler Graph (the dual of the WGV). In contrast to WGV, we prove that the WS problem is in APX for sigma=O(1); The above findings suggest that most problems under this theme are computationally difficult. However, we identify a class of graphs for which the recognition problem is polynomial time solvable, raising the open question of which parameters determine this problem\u27s difficulty
    corecore