124 research outputs found

    Complex Projective Synchronization in Drive-Response Stochastic Complex Networks by Impulsive Pinning Control

    Get PDF
    The complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems is considered. The impulsive pinning control scheme is adopted to achieve complex projective synchronization and several simple and practical sufficient conditions are obtained in a general drive-response network. In addition, the adaptive feedback algorithms are proposed to adjust the control strength. Several numerical simulations are provided to show the effectiveness and feasibility of the proposed methods

    Mathematical problems for complex networks

    Get PDF
    Copyright @ 2012 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is made available through the Brunel Open Access Publishing Fund.Complex networks do exist in our lives. The brain is a neural network. The global economy is a network of national economies. Computer viruses routinely spread through the Internet. Food-webs, ecosystems, and metabolic pathways can be represented by networks. Energy is distributed through transportation networks in living organisms, man-made infrastructures, and other physical systems. Dynamic behaviors of complex networks, such as stability, periodic oscillation, bifurcation, or even chaos, are ubiquitous in the real world and often reconfigurable. Networks have been studied in the context of dynamical systems in a range of disciplines. However, until recently there has been relatively little work that treats dynamics as a function of network structure, where the states of both the nodes and the edges can change, and the topology of the network itself often evolves in time. Some major problems have not been fully investigated, such as the behavior of stability, synchronization and chaos control for complex networks, as well as their applications in, for example, communication and bioinformatics

    Projective Synchronization Analysis of Drive-Response Coupled Dynamical Network with Multiple Time-Varying Delays via Impulsive Control

    Get PDF
    The problem of projective synchronization of drive-response coupled dynamical network with delayed system nodes and multiple coupling time-varying delays is investigated. Some sufficient conditions are derived to ensure projective synchronization of drive-response coupled network under the impulsive controller by utilizing the stability analysis of the impulsive functional differential equation and comparison theory. Numerical simulations on coupled time delay Lorenz chaotic systems are exploited finally to illustrate the effectiveness of the obtained results

    Weak Projective Synchronization in Drive-Response Dynamical Networks with Time-Varying Delay and Parameter Mismatch

    Get PDF
    This paper investigates the problem of projective synchronization in drive-response dynamical networks (DRDNs) with time-varying delay and parameter mismatch via impulsive control. Owing to projective factor and parameter mismatch, complete projective synchronization cannot be achieved. Therefore, a weak projective synchronization scheme is proposed to ensure that the DRDNs are in a state of synchronization with an error level. Based on the stability analysis of the impulsive functional differential equations, a general method of the weak projective synchronization with the error level is derived in DRDNs. Numerical simulations are provided to verify the correctness and effectiveness of the proposed method and results

    Projective synchronization analysis for BAM neural networks with time-varying delay via novel control

    Get PDF
    In this paper, the projective synchronization of BAM neural networks with time-varying delays is studied. Firstly, a type of novel adaptive controller is introduced for the considered neural networks, which can achieve projective synchronization. Then, based on the adaptive controller, some novel and useful conditions are obtained to ensure the projective synchronization of considered neural networks. To our knowledge, different from other forms of synchronization, projective synchronization is more suitable to clearly represent the nonlinear systems’ fragile nature. Besides, we solve the projective synchronization problem between two different chaotic BAM neural networks, while most of the existing works only concerned with the projective synchronization chaotic systems with the same topologies. Compared with the controllers in previous papers, the designed controllers in this paper do not require any activation functions during the application process. Finally, an example is provided to show the effectiveness of the theoretical results

    Robust Multimode Function Synchronization of Memristive Neural Networks with Parameter Perturbations and Time-Varying Delays

    Get PDF
    Publisher Copyright: IEEE Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Currently, some works on studying complete synchronization of dynamical systems are usually restricted to its two special cases: 1) power-rate synchronization and 2) exponential synchronization. Therefore, how to give a generalization of these types of complete synchronization by the mathematical expression is an open question that needs to be urgently solved. To begin with, this article proposes multimode function synchronization by the mathematical expression for the first time, which is a generalization of exponential synchronization, power-rate synchronization, logarithmical synchronization, and so on. Moreover, two adaptive controllers are designed to achieve robust multimode function synchronization of memristive neural networks (MNNs) with mismatched parameters and uncertain parameters. Each adaptive controller includes function r(t) and update gain σ. By choosing different types of r(t), multiple types of complete synchronization, including power-rate synchronization and exponential synchronization can be obtained. And update gain σ can be used to adjust the speed of synchronization. Therefore, our results enlarge and strengthen the existing results. Two examples are put forward to verify the validity of our results.Peer reviewedFinal Accepted Versio

    Exponential Synchronization of Two Nonlinearly Coupled Complex Networks with Time-Varying Delayed Dynamical Nodes

    Get PDF
    This paper investigates the exponential synchronization between two nonlinearly coupled complex networks with time-varying delay dynamical nodes. Based on the Lyapunov stability theory, some criteria for the exponential synchronization are derived with adaptive control method. Moreover, the presented results here can also be applied to complex dynamical networks with single time delay case. Finally, numerical analysis and simulations for two nonlinearly coupled networks which are composed of the time-delayed Lorenz chaotic systems are given to demonstrate the effectiveness and feasibility of the proposed complex network synchronization scheme
    • …
    corecore