164 research outputs found

    A Simplified Approach to Recovery Conditions for Low Rank Matrices

    Get PDF
    Recovering sparse vectors and low-rank matrices from noisy linear measurements has been the focus of much recent research. Various reconstruction algorithms have been studied, including â„“1\ell_1 and nuclear norm minimization as well as â„“p\ell_p minimization with p<1p<1. These algorithms are known to succeed if certain conditions on the measurement map are satisfied. Proofs of robust recovery for matrices have so far been much more involved than in the vector case. In this paper, we show how several robust classes of recovery conditions can be extended from vectors to matrices in a simple and transparent way, leading to the best known restricted isometry and nullspace conditions for matrix recovery. Our results rely on the ability to "vectorize" matrices through the use of a key singular value inequality.Comment: 6 pages, This is a modified version of a paper submitted to ISIT 2011; Proc. Intl. Symp. Info. Theory (ISIT), Aug 201

    Structured random measurements in signal processing

    Full text link
    Compressed sensing and its extensions have recently triggered interest in randomized signal acquisition. A key finding is that random measurements provide sparse signal reconstruction guarantees for efficient and stable algorithms with a minimal number of samples. While this was first shown for (unstructured) Gaussian random measurement matrices, applications require certain structure of the measurements leading to structured random measurement matrices. Near optimal recovery guarantees for such structured measurements have been developed over the past years in a variety of contexts. This article surveys the theory in three scenarios: compressed sensing (sparse recovery), low rank matrix recovery, and phaseless estimation. The random measurement matrices to be considered include random partial Fourier matrices, partial random circulant matrices (subsampled convolutions), matrix completion, and phase estimation from magnitudes of Fourier type measurements. The article concludes with a brief discussion of the mathematical techniques for the analysis of such structured random measurements.Comment: 22 pages, 2 figure

    Sparse recovery in bounded Riesz systems with applications to numerical methods for PDEs

    Get PDF
    We study sparse recovery with structured random measurement matrices having independent, identically distributed, and uniformly bounded rows and with a nontrivial covariance structure. This class of matrices arises from random sampling of bounded Riesz systems and generalizes random partial Fourier matrices. Our main result improves the currently available results for the null space and restricted isometry properties of such random matrices. The main novelty of our analysis is a new upper bound for the expectation of the supremum of a Bernoulli process associated with a restricted isometry constant. We apply our result to prove new performance guarantees for the CORSING method, a recently introduced numerical approximation technique for partial differential equations (PDEs) based on compressive sensing

    Limits on Sparse Data Acquisition: RIC Analysis of Finite Gaussian Matrices

    Full text link
    One of the key issues in the acquisition of sparse data by means of compressed sensing (CS) is the design of the measurement matrix. Gaussian matrices have been proven to be information-theoretically optimal in terms of minimizing the required number of measurements for sparse recovery. In this paper we provide a new approach for the analysis of the restricted isometry constant (RIC) of finite dimensional Gaussian measurement matrices. The proposed method relies on the exact distributions of the extreme eigenvalues for Wishart matrices. First, we derive the probability that the restricted isometry property is satisfied for a given sufficient recovery condition on the RIC, and propose a probabilistic framework to study both the symmetric and asymmetric RICs. Then, we analyze the recovery of compressible signals in noise through the statistical characterization of stability and robustness. The presented framework determines limits on various sparse recovery algorithms for finite size problems. In particular, it provides a tight lower bound on the maximum sparsity order of the acquired data allowing signal recovery with a given target probability. Also, we derive simple approximations for the RICs based on the Tracy-Widom distribution.Comment: 11 pages, 6 figures, accepted for publication in IEEE transactions on information theor
    • …
    corecore