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We study sparse recovery with structured random measurement matrices having 
independent, identically distributed, and uniformly bounded rows and with a 
nontrivial covariance structure. This class of matrices arises from random sampling 
of bounded Riesz systems and generalizes random partial Fourier matrices. Our 
main result improves the currently available results for the null space and restricted 
isometry properties of such random matrices. The main novelty of our analysis is 
a new upper bound for the expectation of the supremum of a Bernoulli process 
associated with a restricted isometry constant. We apply our result to prove 
new performance guarantees for the CORSING method, a recently introduced 
numerical approximation technique for partial differential equations (PDEs) based 
on compressive sensing.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Compressive sensing [18,19,27,29,45] provides efficient methods that allow to recover (approximately) 
sparse vectors from a surprisingly small amount of random measurements. Although compressive sensing 
was initially motivated by signal processing applications, it has recently inspired a new generation of hybrid 
methodologies in computational mathematics. This includes compressive sensing techniques for polynomial 
interpolation [1,41,43], high-dimensional function approximation [2,3,22], the numerical solution of PDEs [15,
31,33], uncertainty quantification of PDEs with random inputs [28,38,42,50,51], dynamical systems [48], and 
inverse problems in PDEs [5]. In this paper, our main application of interest is the numerical approximation 
of PDEs based on compressive sensing via the CORSING (COmpRessed SolvING) method [15,16].
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A key theoretical task in compressive sensing is to provide estimates for the so-called restricted isometry 
constants or, strongly related to this, to derive the null space property, of random measurement matrices. 
Such estimates lead to bounds on the sufficient number of measurements for recovery in terms of the 
sparsity and the dimension of the vector to be recovered. We also note that, besides compressive sensing, 
the estimation of the restricted isometry constant of a matrix is a central problem in, e.g., the analysis of 
list-decodeable linear codes [21], and Johnson-Lindenstrauss embeddings [34,39].

A class of structured measurement matrices, which plays an important role in compressive sensing as 
well as in the CORSING method for the numerical solution of PDEs, arises from random sampling function 
systems (such as the Fourier system). While corresponding bounds on the restricted isometry constants exist 
for orthonormal systems that are bounded in the L∞-norm [18,29,45,10], similar estimates for the more 
general class of bounded Riesz systems (where orthogonality does not necessary hold) are not yet available 
in the literature up to the best of the authors’ knowledge. The CORSING method, however, typically requires 
to work with Riesz systems rather than orthonormal systems, which raises the need for such a generalization.

The contribution of this paper is twofold. On the one hand, we provide a new analysis of the restricted 
isometry constants and null space property of matrices arising from random sampling in bounded Riesz 
systems, which also improves the available bounds for the orthonormal case. On the other hand, we take 
advantage of this result to obtain substantially improved theoretical guarantees for the CORSING method.

1.1. Main results

Recall that the restricted isometry constant of sparsity level s of a matrix A with N columns is defined 
by

εs := sup
f∈Ds,N

∣∣∣‖Af‖2
2 − 1

∣∣∣,
where Ds,N := {f ∈ CN : ‖f‖0 ≤ s, ‖f‖2 = 1} is the set of unit-norm vectors with support size at 
most s. Our main theorem establishes a concentration inequality, which implies bounds for the restricted 
isometry constants (and establishes the null space property) of a random matrix whose rows are independent, 
identically distributed, and uniformly bounded random vectors.

Theorem 1.1. There exist absolute constants κ, c0, c1 > 0 such that the following holds. Let X1, . . . , Xm be 
independent copies of a random vector X ∈ CN with bounded coordinates, i.e., for all i = 1, . . . , N we have 
|〈X, ei〉| ≤ K for some K > 0 where e1, . . . , eN is the standard basis of CN . Let T ⊆ {f ∈ CN : ‖f‖1 ≤ √

s}, 
δ ∈ (0, κ) and assume that

m ≥ c0 K
2δ−2s log(eN) log2(sK2/δ) . (1.1)

Then, with probability exceeding 1 − 2 exp(−δ2m/(sK2)),

sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,X〉|2
∣∣∣ ≤ c1

(
δ + δ sup

f∈T
E|〈f,X〉|2

)
. (1.2)

Remark 1.2. The values of the constants in the above theorem can be chosen as κ = 1
28 (10 −7

√
2) ≈ 0.3066, 

c0 = 1600(99 + 70
√

2) ≈ 316792 and c1 = 492. We have not optimized these constants in our proof and 
believe that they can be further reduced.

Theorem 1.1 fits into a line of work [9,20,22,30,45] that studies the restricted isometry constants of 
random matrices associated with random sampling from a bounded orthonormal system. In the break-
through work [20] it was established that the restricted isometry constant εs of such a matrix satisfies 
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εs ≤ δ0 with probability at least 1 − N−c0τ provided that the number of measurements m satisfies 
m ≥ c1τs log6(N) (where c0 and c1 only depend on δ0). In [45] generic chaining techniques were used 
to show that m ≥ c0ε

−2s log(s log(N)) log2(s) log(N) suffice to guarantee that εs ≤ ε with high probability. 
Using a different technique, [9] showed that m ≥ c0ε

−6s log(s) log2(N) measurements are sufficient for a 
discrete bounded orthonormal system. The latter result was generalized in [22] to continuous sampling sce-
narios. Inspired by the methods in [9] it was shown in [30] that for a discrete bounded orthonormal system 
m ≥ c0ε

−2 log2(s/ε) log(eN) log(1/ε) measurements are sufficient. Recently, the work [6] has shown that 
the condition m ≥ c0s log(s) log(N/s) is necessary for a randomly subsampled Hadamard matrix to satisfy 
εs ≤ c1. Hence, for constant δ, K and for s ≤ Nα for some α < 1, say, the bound (1.1) is optimal up to a 
factor of log(s).

Theorem 1.1 improves on these state-of-the-art results in several ways. In the setting of continuous 
bounded orthonormal systems, it shows that m ≥ c0ε

−2s log(eN) log2(s/ε) measurements suffice to guar-
antee that εs ≤ ε with high probability. In particular, compared to [30], we remove a log(1/ε) factor and 
achieve a result in the setting of continuous sampling. Compared to [22], we improve the dependence on 
ε. Finally, Theorem 1.1 more generally yields estimates on the restricted isometry constants of matrices 
associated with random sampling from a bounded Riesz system. We refer to Theorem 2.3 and Remark 2.4
for details.

Our proof of Theorem 1.1 is inspired by the methods in [9] and [30], but in contrast to these references 
we develop our proof in the terminology of generic chaining [47]. We believe that this makes the proof more 
transparent, at least, for those familiar with generic chaining techniques. Moreover, our proof leads to the 
improved dependence in δ in (1.1) (resp. in ε in estimates for the RIP).

Although Theorem 1.1 is concerned with subsets of the �1-ball, it is possible to extend it to subsets 
of a weighted �1-ball, i.e., the unit ball of the norm ‖f‖ω,1 :=

∑n
j=1 ωj |fj |, where ωj ≥ 1 is a sequence 

of weights. We refer the reader to Section 2.3 for more details on this extension and its applications to 
weighted compressive sensing and uncertainty quantification.

We apply Theorem 1.1 to obtain improved robust recovery guarantees for the CORSING method. This is a 
recently introduced numerical method for computing a sparse approximation of the solution to a PDE based 
on compressive sensing [12,15,16]. Given a PDE admitting a weak formulation, the idea of the method is to 
assemble a reduced Petrov-Galerkin discretization via random sampling and to solve this reduced system 
using a sparse recovery algorithm. Compared to other nonlinear approximation methods for PDEs, such as 
adaptive finite elements or adaptive wavelets methods (see, e.g., [49] and references therein), CORSING has 
the advantages that no a posteriori error indicators are needed and that the assembly of the discretization 
matrix as well as the sparse recovery step (here performed via Orthogonal Matching Pursuit (OMP)) can be 
easily parallelized. We refer to [16] for a more detailed discussion and to [12,14–16] for numerical experiments 
for multi-dimensional advection-diffusion-reaction equations and the Stokes problem.

The best available theoretical guarantees for the CORSING method [16] state that in order to recover the 
best s-term approximation of the PDE solution with respect to a Riesz basis of trial functions, it is sufficient 
to assemble a number of rows proportional to s2 (up to logarithmic factors) under suitable assumptions 
involving the trial and test functions and the bilinear form defining the weak formulation of the PDE. This 
is highly suboptimal compared to standard compressive sensing results, where a number of measurements 
proportional to s (up to log factors) is usually sufficient. Indeed, numerical experiments show that the 
quadratic scaling s2 is highly pessimistic (see [16, Figure 8]). Another limitation of the state-of-the-art 
results is the assumption that one solves an NP-hard problem exactly in the recovery phase.

In this paper, we bridge these gaps by showing robust recovery guarantees under optimal linear scaling 
between m and s (up to log factors) which cover sparse recovery via �1-minimization and via orthogonal 
matching pursuit (OMP). The latter is preferred in practice. This result is stated in Theorem 3.9. The main 
technical challenge is to establish an improved bound on the sufficient size of the reduced Petrov-Galerkin 
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discretization by analyzing the restricted isometry constant of the corresponding random matrix, which 
does not have a trivial covariance. This challenge is overcome thanks to Theorem 1.1.

1.2. Organization of the paper

In Section 2 we present several consequences of Theorem 1.1 for sparse recovery via �1-minimization 
in the case of subsampled bounded Riesz systems (Sections 2.1 and 2.2). Taking advantage of the theory 
presented in Section 2, we prove new recovery guarantees for the CORSING method in Section 3, focusing 
on the case where recovery is performed via orthogonal matching pursuit. Section 4 develops the proof of 
Theorem 1.1 and is the technical core of the paper.

1.3. Notation

Throughout the paper we will use the following notation. Given N ∈ N, we define [N ] := {1, . . . , N}. 
Moreover, given a vector x ∈ CN , we denote its �p-norm as ‖x‖p = (

∑N
j=1 |xj |p)1/p for p > 0 and its �0-norm 

as ‖x‖0 = |{j ∈ [N ] : xj �= 0}|. Moreover, we let BN
�p = {x ∈ CN : ‖x‖p ≤ 1} for p > 0. We denote the 

set of s-sparse vectors of CN as Σs,N := {x ∈ CN : ‖x‖0 ≤ s} and the set of s-sparse unit vectors of CN

as Ds,N := {x ∈ CN : ‖x‖0 ≤ s, ‖x‖2 = 1}. Finally, the notation X � Y hides the presence of a constant 
c > 0 independent of X and Y such that X ≤ cY . Given a set S, |S| denotes its cardinality. Moreover, 
if S ⊆ [N ], then Sc is the complement set of S with respect to [N ]. We use letters c, c′ or ck with k ∈ N

to denote universal (or absolute) constants and it is understood that such numbers are not necessarily the 
same on every occurrence.

2. Sparse recovery in bounded Riesz systems

This section outlines several applications of our main result, Theorem 1.1, in compressive sensing. We 
focus on new sparse recovery guarantees for subsampled bounded Riesz systems, which extend previously 
known results for these settings (Sections 2.1 and 2.2). Most of the recovery guarantees rely on the notion 
of restricted isometry property.

Definition 2.1 (Restricted isometry property). The restricted isometry constant εs of a matrix A ∈ Cm×N

is defined by

εs := sup
f∈Ds,N

∣∣∣‖Af‖2
2 − 1

∣∣∣. (2.1)

If a matrix A ∈ Cm×N satisfies εs ≤ ε for some ε > 0, then we say that A satisfies RIP(ε, s).

2.1. Subsampled bounded Riesz systems

The first application of Theorem 1.1 is concerned with the recovery of functions having a sparse expansion 
with respect to a Riesz system. We start by recalling the definition of a Riesz system.

Definition 2.2 (Riesz system). Let (H, 〈·, ·〉H) denote a complex Hilbert space. A sequence (ψj)j∈N with 
ψj ∈ H is called a Riesz system if there exist constants 0 < cψ ≤ Cψ < ∞, such that for every f =
(fn)n∈N ∈ �2(C),

cψ‖f‖2
�2(C) ≤

∥∥∥∑ fjψj

∥∥∥2

H
≤ Cψ‖f‖2

�2(C). (2.2)

j∈N
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Let us point out that an orthogonal system is a Riesz system with constants cψ = Cψ = 1.
In the following, we focus on Riesz systems for Hilbert spaces of the form H = L2(S, μ), where S ⊆ Rr

and μ is a probability measure on S. For the Hilbert space L2(S, μ) the inner product 〈·, ·〉L2(S,μ) and the 
corresponding norm ‖ · ‖L2(S,μ) are given by

〈f, g〉L2(S,μ) =
∫
S

f(ω)g(ω) dμ(ω) and ‖f‖L2(S,μ) =
√
〈f, f〉L2(S,μ) .

We consider a sequence (ψj : S → C)j∈N of bounded, measurable functions satisfying (2.2). Let F ∈ H be 
a function with a finite and sparse Riesz expansion, i.e.,

F =
∑
j∈[N ]

fjψj and f ∈ Σs,N . (2.3)

In this setting, we are interested in the problem of recovering the coefficients f of the function F ∈ L2(S, μ)
with respect to (ψj)j∈[N ] from a finite number of samples F (ω1), . . . F (ωm), where ω1, . . . , ωm ∈ S are drawn 
i.i.d. at random with respect to the measure μ. We will outline two approaches to address this question. 
The first one is based on the restricted isometry property (Theorem 2.3) and the second one is based on 
the �2-robust null space property (Theorem 2.6).

The first approach is to show that the matrix

A = 1√
mCψ

(ψj(ωi))i∈[m],j∈[N ], (2.4)

satisfies RIP(ε, s) under suitable conditions on m, s, and ε. If A satisfies RIP(ε, 2s) for ε ≤ 1/
√

2, then the 
coefficients of F with respect to (ψj)j∈[N ] can be recovered from noisy observations y1 = F (ω1) +e1, . . . , ym =
F (ωm) + em with ‖e‖2 ≤ ζ via the quadratically-constrained basis pursuit program (see, e.g., [17, Theorem 
2.1])

min
z∈CN

‖z‖1 subject to ‖
√
CψmAz − y‖2 ≤ ζ . (BPζ)

This approach will lead to some limitations on the restricted isometry constant εs that are particularly 
restrictive when the ratio cψ/Cψ is small.

Theorem 2.3. There are absolute constants c0, c1 > 0, such that the following holds. Let H = L2(S, μ) and 
let (ψj)j∈[N ] be a Riesz system. Let ε ∈ (1 − cψ

Cψ
, 1), Kψ = maxj∈[N ] ‖ψj‖L∞(S) and assume that

m ≥ c0 max{C−2
ψ , 1}K2

ψη
−2 s log2(sK2

ψ max{C−2
ψ , 1}η−2) log(eN) , (2.5)

where η = (ε − 1 + cψ
Cψ

) > 0. Then, with probability at least

1 − 2 exp(−c1 min{C2
ψ, 1}η2m/(K2

ψs))

the matrix A defined in (2.4) satisfies RIP(ε, s).

Remark 2.4. As pointed out above, an orthonormal system is a special case of a Riesz system with cψ =
Cψ = 1. Therefore, Theorem 2.3 also recovers and extends known results for bounded orthonormal systems 
[9,30,22].
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Proof of Theorem 2.3. Let X(ω) := (ψj(ω))j∈[N ], where ω ∈ S is chosen at random with respect to μ, and 
let X1, . . . , Xm denote independent copies of X. Then, recalling (2.2), (2.4) and that ‖f‖2 = 1 for f ∈ Ds,N

we see that

E|〈X, f〉|2 = ‖F‖2
L2(S,μ) ∈ [cψ‖f‖2

2, Cψ‖f‖2
2] = [cψ, Cψ]

and

1
m

m∑
j=1

|〈Xi, f〉|2 = Cψ‖Af‖2
2.

Further, let κ, c1 > 0 denote the constants in Theorem 1.1 and observe that Ds,N ⊆ √
sBN

�1 . Therefore, 
setting η = ε − 1 + cψ

Cψ
and applying Theorem 1.1 with δ = 1

2c1 min{Cψ, 1} · η, T =
√
sBN

�1 ∩ SN−1 and 
noticing that with these parameters we have δ < κ, shows that the following event occurs with probability 
exceeding 1 − 2 exp(−c min{C2

ψ, 1}η2m/(sK2
ψ)):

sup
f∈Ds,N

∣∣∣‖Af‖2
2 −

1
Cψ

E|〈f,X〉|2
∣∣∣ ≤ min{Cψ, 1}

Cψ

η

2 + min{Cψ, 1}
Cψ

η

2 sup
f∈Ds,N

E|〈f,X〉|2

≤ min{Cψ, 1}
(
1 + 1

Cψ

)η
2 ≤ η ,

provided that (2.5) is satisfied for a suitable constant c0 > 0. In the above event, we find that for all 
f ∈ Ds,N the inequality

cψ
Cψ

− η ≤ ‖Af‖2
2 ≤ 1 + η, (2.6)

holds. Recalling the definition of η, the inequality (2.6) reads

(1 − ε) ≤ ‖Af‖2
2 ≤

(
1 + ε− 1 + cψ

Cψ

)
≤ (1 + ε),

which implies RIP(ε, s) for ε ∈ (1 − cψ
Cψ

, 1) and concludes the proof. �
Remark 2.5. An inspection of the proof of Theorem 2.3 reveals that a sufficient assumption on (ψj)j∈[N ] is 
that the relation (2.2) holds only for every f ∈ Σs,N . This relaxed assumption will be used for the analysis 
in Section 2.2 and for the application to the CORSING method in Section 3.

As pointed out above, the fact that the matrix A defined in (2.4) only satisfies RIP(ε, s) for ε ∈ (1 − cψ
Cψ

, 1)
might cause difficulties for recovering the coefficients of the function F , since, e.g., [29, Theorem 6.12] requires 
that A satisfies RIP(ε, 2s) for ε ≤ 1/

√
2 in order to recover all s-sparse signals via (BPζ). Thus, if the ratio 

cψ/Cψ satisfies cψ/Cψ ≤ (
√

2 − 1)/
√

2, then the assumption on the restricted isometry constant cannot be 
satisfied. We note that it is possible to relax the assumption on ε and require that A satisfies RIP(ε, ts)
with ε <

√
(t− 1)/t with t ≥ 4/3 (see [17, Theorem 2.1]). Following this approach requires that t ≥ Cψ/cψ

and therefore requires the number of measurements m at rate Cψ/cψ.
Below we provide an alternative analysis of the problem of recovering the coefficients of F based on the 

�2-robust null space property. This will circumvent the limitations due to the restricted isometry property 
analysis and leads to a better measurement complexity.
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Theorem 2.6. There exist absolute constants c0, c1 > 0 such that the following holds. Let s, m, N ∈ N and 
A ∈ Cm×N be defined as in (2.4). Let ‖e‖2 ≤ ζ, f ∈ CN and set y = Af + e ∈ Cm. Assume that

m ≥ c0

(
max{1, Cψ}

cψ

)2

K2
ψ s log2(sK2

ψ max{1, Cψ}/cψ) log(eN) . (2.7)

Then, with probability at least 1 − 2 exp(−c1(cψ/ max{1, Cψ})2m/(sK2
ψ)) any minimizer f# of the program 

(BPζ) satisfies

‖f − f#‖1 ≤ 9
2 min

z∈Σs,N

‖f − z‖1 + 14Cψ

cψ

√
sζ ,

‖f − f#‖2 ≤ 9
2
√
s

min
z∈Σs,N

‖f − z‖1 + 14Cψ

cψ
ζ .

Remark 2.7. If f ∈ Σs,N , then minz∈Σs,N
‖f −z‖1 = 0 and we conclude that for universal constants c, c′ > 0

‖f − f#‖1 ≤ c(Cψ/cψ)
√
sζ and ‖f − f#‖2 ≤ c′(Cψ/cψ)ζ.

As mentioned above, the proof of Theorem 2.6 relies on the notion of the �2-robust null space property 
and its relation to sparse recovery via �1-minimization.

Definition 2.8. A matrix A ∈ Cm×N satisfies the �2-robust null space property of order s with constants 
α ∈ (0, 1) and τ > 0 if

‖vS‖2 ≤ α√
s
‖vSc‖1 + τ‖Av‖2,

holds for every v ∈ CN and every set S ⊆ [N ] with |S| ≤ s.

The relation between stable recovery of f ∈ CN and the �2-robust null space property is stated by the 
following theorem (see, e.g., [29, Theorem 4.22]).

Theorem 2.9. Let A ∈ Cm×N satisfy the �2-robust null space property of order s with constants α ∈ (0, 1)
and τ > 0. Let ‖e‖2 ≤ ζ, f ∈ CN and set y = Af + e. Then any minimizer f# of the program (BPζ)
satisfies

‖f − f#‖1 ≤ c0 min
z∈Σs,N

‖f − z‖1 + c1
√
sζ ,

‖f − f#‖2 ≤ c0√
s

min
z∈Σs,N

‖f − z‖1 + c1ζ ,

with c0 = (1+α)2
1−α and c1 = (3+α)

1−α τ .

Proof of Theorem 2.6. By Theorem 2.9 it suffices to show that A as defined in (2.4) satisfies the �2-robust 
null space property of order s with α = 1

2 and τ = 2Cψ

cψ
. Define the cone

Tν,s :=
{
f ∈ CN : ∀S ⊆ [N ] with |S| ≤ s : ‖fS‖2 ≥ α√

s
‖fSc‖1

}
. (2.8)

It is known (see e.g. [26,32]) that if

inf
N−1

‖Af‖2 ≥ 1
,

z∈Tν,s∩S τ
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with SN−1 := {f ∈ CN : ‖f‖2 = 1}, then A satisfies the �2-robust null space property with constants τ and 
α. Moreover, by [26, Lemma 3],

Tα,s ⊆ (2 + α−1) conv(Ds,N ) ⊆ (2 + α−1)
√
sBN

�1 .

Hence, it is enough to show that

inf
z∈4

√
sBN

�1∩SN−1
‖Af‖2 ≥ cψ

2Cψ
.

This lower bound is found by applying Theorem 1.1 with a minor modification, which corresponds to working 
with s′ = 16s and multiplying the right-hand side of (1.2) by 16. Since E‖Af‖2

2 ≥ cψ
Cψ

‖f‖2
2,

inf
z∈

√
s′BN

�1∩SN−1
‖Az‖2

2 ≥ inf
z∈

√
s′BN

�1∩SN−1
E‖Az‖2

2 − sup
f∈

√
s′BN

�1∩SN−1

∣∣∣‖Af‖2
2 − E‖Af‖2

2

∣∣∣
≥ cψ

Cψ
− sup

f∈
√
s′BN

�1∩SN−1

∣∣∣‖Af‖2
2 − E‖Af‖2

2

∣∣∣ .
By Theorem 1.1 applied for 

√
s′BN

�1 ∩ SN−1 ⊆
√
s′BN

�1 and δ = cψ/(64 · c0 max{1, Cψ}), where 
c0 > 0 is the constant from Theorem 1.1, the supremum is bounded with probability at least 1 −
2 exp(−c1(cψ/ max{1, Cψ})2m/(sK2

ψ)) by

sup
f∈

√
s′BN

�1∩SN−1

∣∣∣‖Af‖2
2 − E‖Af‖2

2

∣∣∣
≤ 16 · c0 cψ

64 · c0 Cψ max{1, Cψ}
(
1 + sup

f∈
√
s′BN

�1∩SN−1
E|〈f,X〉|2

)
≤ cψ

4Cψ max{1, Cψ}
(1 + Cψ)

(2.9)

provided that (recall that s′ = 16s) for a constant c > 0 depending on c0

m ≥ c ·
(

max{1, Cψ}
cψ

)2

K2
ψ s log(sK2

ψ max{1, Cψ}/cψ)2 log(eN) .

We distinguish two cases on the event (2.9). For Cψ ≤ 1, we find

cψ
4Cψ max{1, Cψ}

(1 + Cψ) ≤ cψ
4Cψ

(1 + Cψ) ≤ cψ
2Cψ

. (2.10)

On the other hand, for Cψ > 1,

cψ
4Cψ max{1, Cψ}

(1 + Cψ) ≤ cψ
4C2

ψ

(1 + Cψ) ≤ cψ
2Cψ

. (2.11)

Combining the estimates (2.9), (2.10) and (2.11) concludes the proof. �
2.2. Coherence-based sampling

We conclude this section with an application of Theorem 1.1 that will be essential for our analysis of the
CORSING method in Section 3. We consider vectors {b1, . . . , bM} ⊆ CN with M ≥ N , such that the matrix
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B = (b1 | b2 | · · · | bM )T ∈ CM×N , (2.12)

satisfies

cB‖f‖2
2 ≤ ‖Bf‖2

2 ≤ CB‖f‖2
2, for all f ∈ Σs,N , (2.13)

and suitable constants 0 < cB ≤ CB . The constants cB and CB are also known as the minimum and 
the maximum s-sparse eigenvalues of B∗B (see [46]). Our goal is to construct a matrix that satisfies the 
restricted isometry property by sampling a small number of rows of B. Following [35], the idea is to sample 
according to the local coherence. We say that ν ∈ RM is a local coherence for B if

max
n∈[N ]

|Bjn|2 ≤ νj for all j ∈ [M ] . (2.14)

Define a random vector X ∈ CN by

P
(
X =

√
‖ν‖1

νj
bj

)
= νj

‖ν‖1
. (2.15)

Let X1, . . . , Xm denote independent copies of X and consider

A = 1√
mCB

(X1| · · · |Xm )T . (2.16)

Then for any f ∈ CN ,

E|〈X, f〉|2 =
M∑
j=1

νj
‖ν‖1

‖ν‖1

νj
|〈bj , f〉|2 = ‖Bf‖2

2 and 1
m

m∑
i=1

|〈Xi, f〉|2 = CB‖Af‖2
2 .

Moreover, for each i ∈ [N ] and ei a standard basis vector of Cm we have

|〈X, ei〉| ≤
√
‖v‖1 max

j∈[M ]

1
√
νj

max
n∈[N ]

|Bjn| ≤
√
‖ν‖1 . (2.17)

Now, applying Theorem 1.1 and arguing similarly to Theorem 2.3, we obtain the following RIP result for 
the matrix A.

Theorem 2.10. There exist universal constants c0, c1 > 0, such that the following holds. Let B ∈ CM×N be 
such that (2.13) holds. Let s, m ∈ N and ε ∈ (1 − cB

CB
, 1). Let ν ∈ RM be such that (2.14) holds and assume

m ≥ c0 max{C−2
B , 1} η−2 s‖ν‖1 log2(s‖ν‖1 max{C−2

B , 1}η−2) log(eN) ,

with η = ε − 1 + cB
CB

. Then, with probability at least 1 − 2 exp(−c1 min{C2
B , 1}η2m/(‖ν‖1s)) the matrix A

defined in (2.16) satisfies RIP(ε, s).

2.3. Extension to weighted �1-minimization

The previous sections studied the impact of Theorem 1.1 on sparse recovery via �1-minimization. The 
weighted �1-minimization program (see (BPw,ζ) below) was suggested in [44] as a means of incorporating 
additional information on the smoothness of the function F : S → C, when trying to solve the interpolation 
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problem discussed in Section 2.1. Recall that we aim at finding the coefficients of a function F : S → C with 
respect to a bounded Riesz system (ψj)j∈N from a finite number noisy observations F (ω1) +e1, . . . , F (ωm) +
em. Our strategy is based on the assumption that the sequence of coefficients of (fj)i∈[N ], which represent the 
function F =

∑
j∈[N ] fjψj with respect to (ψj)j∈[N ], is s-sparse. In real world scenarios smoothness of F often 

plays a crucial role. In this section we discuss the problem of amalgamating smoothness assumptions with 
sparsity assumptions on F . Weighted sparsity and weighted �1-minimization is also crucial for compressive 
sensing approaches to function recovery in high-dimensions and, in particular, for solving parametric PDEs 
[42,22,8] appearing for instance in the context of uncertainty quantification. We refer the reader to [44,42,
22,3] and the references therein for an introduction to the subject and examples. In this section our path to 
recovery guarantees for weighted �1-minimization passes through a suitable weighted notion of the restricted 
isometry property as used in [44].

2.3.1. Weighted �p-spaces and the weighted RIP
In order to quantify smoothness information on the function that we are trying to interpolate, we follow 

the reference [44] and use the following weighted versions of �p-spaces for 0 < p ≤ 2. Let w = (wj)j∈[N ]
denote a sequence of weights with wj ≥ 1 and for 0 < p ≤ 2 set

�pw :=
{
f ∈ CN : ‖f‖w,p :=

( ∑
j∈[N ]

w2−p
j |fj |p

) 1
p
}
. (2.18)

Later the weight sequence (wj)j∈[N ] is chosen in a way, such that wj ≥ ‖ψj‖L∞(S). The work [44] recognized 
that there is a notion of sparsity which is consistent with the weighted version of �p-spaces in (2.18). For 
each f ∈ CN we define a suitable version of the �0-norm given by setting

‖f‖w,0 =
∑

j∈{j:fj �=0}
w2

j , (2.19)

and calling a signal f ∈ CN s-sparse respect to the sequence w, if ‖f‖w,0 ≤ s.
The notion of sparsity with respect to a weight sequence w ∈ [1, ∞)N gives rise to the following version 

of the restricted isometry property.

Definition 2.11 (Weighted restricted isometry property). Let

Ds,N (w) := {f ∈ CN : ‖f‖w,0 ≤ s, ‖f‖2 = 1} . (2.20)

The weighted restricted isometry constant εs,w of a matrix A ∈ Cm×N is defined by

εs,w := sup
f∈Ds,N (w)

∣∣∣‖Af‖2
2 − 1

∣∣∣. (2.21)

If a matrix A ∈ Cm×N satisfies εs,w ≤ ε for some ε > 0, then we say that A satisfies w-RIP(ε, s).

A crucial observation is that the Cauchy-Schwarz inequality implies that every f ∈ Ds,N (w) satisfies

‖f‖w,1 ≤
( N∑

j=1
w2

j

)1/2
‖f‖2 ≤

√
s .

Hence, we find the familiar inclusion

Ds,N (w) ⊂
√
sBN

�1 ∩ SN−1 . (2.22)

w
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2.3.2. Recovery by weighted �1-minimization
In Section 2.1 we leveraged a connection between the restricted isometry property and recovery guarantees 

of �1-minimization in order to use Theorem 1.1. A similar connection was observed for the weighted �1-
minimization program,

min
z∈CN

‖z‖w,1 subject to ‖
√
CψmAz − y‖2 ≤ ζ . (BPw,ζ)

Let us state the following simplified version of this connection from [44].

Theorem 2.12 ([44, Theorem 4.5 & Corollary 4.3]). Let A ∈ Cm×N such that A satisfies w-RIP(ε, s) for 
ε ≤ 1/3 and for s ≥ 2‖w‖2

∞. Let f ∈ Ds,N (w) and set y = Af + e with ‖e‖2 ≤ ζ. Further, let f# denote 
the minimizer of (BPw,ζ), then there exist constants c0, c1 > 0 depending only on ε > 0, such that

‖f − f#‖w,1 ≤ c0
√
sζ ,

‖f − f#‖2 ≤ c1ζ .

Using this result we can employ the same strategy as in Section 2.1 in order to show recovery guarantees 
for the weighted �1-minimization program, provided that we have a suitable version of Theorem 1.1.

2.3.3. Weighted restricted isometry property for Riesz frames
Recalling the inclusion (2.22), we will use the following result in order to obtain recovery guarantees for 

the program (BPw,ζ).

Theorem 2.13. There exist absolute constants κ, c0, c1 > 0 such that the following holds. Let X1, . . . , Xm

be independent copies of a random vector X ∈ CN such that for all j = 1, . . . , N we have |〈X, ej〉| ≤ Kj

for some Kj > 0 where e1, . . . , eN is the standard basis of CN . Let wj ≥ Kj for all j = 1, . . . , N and let 
T ⊆ {f ∈ CN : ‖f‖w,1 ≤ √

s}, δ ∈ (0, κ). Assume further that

m ≥ c0 δ
−2s log(eN) log2(s/δ) . (2.23)

Then, with probability exceeding 1 − 2 exp(−δ2m/s),

sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,X〉|2
∣∣∣ ≤ c1

(
δ + δ sup

f∈T
E|〈f,X〉|2

)
. (2.24)

This enables us to show the following result on the w-RIP(ε, s) for truncated Riesz sequences (and in 
particular for bounded orthonormal systems).

Theorem 2.14. There are absolute constants c0, c1 > 0, such that the following holds. Let H = L2(S, μ) and 
let (ψj)j∈[N ] be a truncated Riesz system. Let ε ∈ (1 − cψ

Cψ
, 1), wj ≥ ‖ψj‖L∞(S) and assume that

m ≥ c0 max{C−2
ψ , 1}η−2s log(smax{C−2

ψ , 1}η−2)2 log(eN) , (2.25)

where η = (ε − 1 + Cψ) > 0. Then, with probability at least 1 − 2 exp(−c1 min{Cψ, 1}η2m/s) the matrix A
defined in (2.4) satisfies w-RIP(ε, s).

Theorem 2.14 follows from Theorem 2.13 by chasing through to argument of Theorem 2.3, and replacing 
the application of Theorem 1.1 to Ds,N ⊆ √

sBN
�1 by applying Theorem 2.13 to the weighted version 

Ds,N (w) ⊆ √
sBN

1 .
�w
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We will outline how to deduce Theorem 2.13 after we have established the proof of Theorem 1.1. The 
difference of the proofs of Theorem 1.1 and of Theorem 2.13 is limited to technical details.

3. Application to numerical approximation of PDEs

As an application of the theory presented in Section 2, we consider the CORSING (COmpRessed SolvING) 
method for the numerical approximation of solutions of PDEs based on compressive sensing [12,15,16]. The
CORSING method is a general paradigm to compute a sparse approximation to the solution of a PDE that 
admits a weak formulation. It assembles a reduced Petrov-Galerkin discretization via compressive sensing. 
As discussed in [16], the advantages of this method compared to other nonlinear approximation methods for 
PDEs, such as adaptive finite elements or adaptive wavelets methods (see, e.g., [49] and references therein), 
are that (i) no a posteriori error indicators are needed and (ii) the assembly of the discretization matrix and 
the sparse recovery, here performed via Orthogonal Matching Pursuit (OMP), can be easily parallelized.

Here, we will focus on the restricted isometry analysis and sparse recovery guarantees for CORSING. 
For numerical experiments for multi-dimensional advection-diffusion-reaction equations and for the Stokes 
problem, we refer the reader to [15,12,16,14]. We also note in passing that the CORSING paradigm can 
be adapted to the framework of collocation techniques for PDEs (see [13]). For an overview of numerical 
methods for PDEs based on compressive sensing, we refer the reader to [13, Section 1.2].

Concerning the sparse recovery method, we resort to OMP as opposed to �1-minimization for two main 
reasons, mainly related to computational efficiency considerations: (i) given a target sparsity level, using 
OMP we can easily control the number of iterations and, consequently, the computational cost of the recovery 
phase; (ii) OMP is easily parallelizable. For a numerical comparison between OMP and �1-minimization in 
this context, we refer to [15, Section 5]. Finally, we note that the restricted isometry analysis of CORSING
presented here can be applied when different sparse recovery procedures are considered.

The section is structured as follows. After describing the setting of weak problems in Hilbert spaces 
in Section 3.1, we recall the main elements of the CORSING method in Section 3.2. Then, we present an 
RIP analysis for the CORSING discretization matrix in Section 3.3 and discuss recovery guarantees for the 
method when the solution is approximated via OMP in Section 3.4.

3.1. Weak problems in Hilbert spaces

Let U and V be separable Hilbert spaces equipped with inner products (·, ·)U and (·, ·)V , and norms 
‖ · ‖U = (·, ·)1/2U and ‖ · ‖V = (·, ·)1/2V . We consider a weak problem of the form

find u ∈ U : a(u, v) = F(v), ∀v ∈ V, (3.1)

where a : U × V → R is a bilinear form and F ∈ V ∗, the dual space of V . An important example of (3.1) is 
the weak formulation of the advection-diffusion-reaction equation with homogeneous boundary conditions, 
where U = V = H1

0 (D), D ⊆ Rd is the physical domain, and the bilinear form is

a(u, v) =
∫
D

μ∇u · ∇v + (β · ∇u)v + ρuv dx, ∀u, v ∈ H1
0 (D), (3.2)

where μ : D → R, β : D → Rd, and ρ : D → R are the diffusion, advection, and reaction coefficients. The 
operator F is defined by

F(u) :=
∫

uF dx, ∀u ∈ H1
0 (D),
D
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where F : D → R is the forcing term (see, e.g., [40] for more details). The analysis in this section will focus 
on abstract weak problems of the form (3.1), but it can be specified to particular PDEs, such as (3.2) (see 
[16]).

In order to guarantee the existence and uniqueness of the solution to (3.1), we assume that the bilinear 
form a(·, ·) satisfies the hypotheses of the classical Babuška-Nečas theory (see, e.g., [40, Theorem 5.1.2]), 
namely

∃α > 0 : inf
u∈U\{0}

sup
v∈V \{0}

a(u, v)
‖u‖U‖v‖V

≥ α, (3.3)

∃β > 0 : sup
u∈U\{0}

sup
v∈V \{0}

a(u, v)
‖u‖U‖v‖V

≤ β, (3.4)

sup
u∈U

a(u, v) > 0, ∀v ∈ V \ {0}. (3.5)

Consider two Riesz bases (ϕj)j∈N and (ξq)q∈N for U and V , respectively, i.e., satisfying relation (2.2). 
We denote the lower and the upper Riesz constants of (ϕj)j∈N as cϕ and Cϕ, respectively. Analogously, 
we denote the Riesz constants of the system (ξq)q∈N as cξ and Cξ. Finally, define the reconstruction and 
decomposition operators Φ : �2(N) → U and Φ∗ : U → �2(N), respectively, by

Φx =
∑
j∈N

xjϕj , ∀x ∈ �2(N), (Φ∗u)j = (u, ϕ∗
j )U , ∀j ∈ N,

where (ϕ∗
j )j∈N is the biorthogonal basis of (ϕj)j∈N (see [23]). The operators Ξ and Ξ∗ are defined analo-

gously. By the Riesz property,

cϕ‖x‖2
2 ≤ ‖Φx‖2

2 ≤ Cϕ‖x‖2
2, cξ‖x‖2

2 ≤ ‖Ξx‖2
2 ≤ Cξ‖x‖2

2 . (3.6)

We discretize problem (3.1) via a Petrov-Galerkin approach. Let N, M ∈ N and consider the finite dimen-
sional truncated spaces

UN := span(ϕj)j∈[N ], V M := span(ξq)q∈[M ], (3.7)

called the trial and the test space, respectively. Accordingly we call (ϕj)k∈[N ] and (ξj)j∈[N ] trial and test 
basis functions, respectively. We associate with these spaces a finite dimensional formulation of (3.1), namely

find u ∈ UN : a(u, v) = F(v), ∀v ∈ V M . (3.8)

By the bilinearity of a(·, ·) and the linearity of F , (3.8) can be discretized as a linear system

Bz = c, (3.9)

where B ∈ CM×N and c ∈ CM are defined by

Bqj = a(ϕj , ξq), cq = F(ξq), ∀j ∈ [N ], ∀q ∈ [M ]. (3.10)

The linear system (3.9) is usually referred to as a Petrov-Galerkin discretization of (3.1), or, in particular, as 
a Galerkin discretization when N = M and UN = V M . This general class of discretizations contains many 
popular numerical approximation methods for PDEs, whose most prominent example is the finite element 
method (see, e.g., [40]).
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Remark 3.1 (On the Riesz basis assumption). When the physical domain D has dimension d = 1, it is easy 
to construct orthonormal bases for the trial and the test functions. For example, in the case of homogeneous 
boundary conditions, i.e., U = V = H1

0 (D) with D = (0, 1), we can consider hierarchical hat functions (see, 
e.g., [25]) as trial basis functions and Fourier-like functions (e.g., sine functions) as test basis functions. 
This setting, considered in [15,16], leads to two orthonormal bases of H1

0 (D). When D = (0, 1)d with d > 1, 
generalizing the Fourier-like basis while preserving orthogonality is easily done via tensorization. However, 
tensorizing the hierarchical basis of hat functions does not preserve orthogonality. In order to obtain a stable 
discretization, one can instead resort to biorthogonal spline wavelets to obtain a Riesz basis (see [14] for 
more details).

3.2. The CORSING method

In order to take advantage of the compressive sensing paradigm, we consider a Petrov-Galerkin dis-
cretization of (3.1), where the bilinear form is evaluated at trial and test basis functions that satisfy suitable 
incoherence properties. Solving the discritized linear system in (3.9) can be expensive from a computational 
perspective. The idea of CORSING is to solve the discretized system (3.9) via compressive sensing, with 
the aim of computing an s-sparse approximation to the solution to (3.1), with s � N , i.e., the computed 
solution belongs to the space

UN
s :=

{ ∑
j∈[N ]

wjϕj : ‖w‖0 ≤ s

}
.

The quality of the approximation space UN
s depends on the sparsity or compressibility of the solution with 

respect to the trial basis. When the trial basis is a Fourier-like basis, sparsity or compressibility is observed 
when the most important frequencies of the solution are clustered over different regions of the spectrum 
due to multiscale phenomena (see, e.g., [37]). On the other hand, using a hierarchical (or wavelet) basis as 
a trial basis leads to sparsity or compressibility of solutions with localized features or boundary layers (see 
[12,16]).

In order to reduce the dimensionality of the discretization (3.9), we pick m � M test indices τ1 . . . , τm ∈
[M ] i.i.d. at random according to a discrete probability measure p ∈ RM on the index set [M ], i.e.,

P (τi = q) = pq, for i ∈ [m], q ∈ [M ]. (3.11)

Then, the resulting CORSING discretization of (3.8) is given by the underdetermined linear system

Az = y, (3.12)

where A ∈ Cm×N and y ∈ Cm are defined by

Aij = a(ϕj , ξτi), yi = F(ξτi), ∀i ∈ [m], ∀j ∈ [N ]. (3.13)

Taking advantage of the compressive sensing paradigm, in the recovery phase we seek an s-sparse solution 
to (3.12), by considering an approximate solution x̂ ∈ CN to the optimization program

x̂ ≈ arg min
z∈Σs,N

‖D(Az − y)‖2, (3.14)

where D ∈ Rm×m is a diagonal preconditioning matrix with diagonal elements

Dii = 1
√ , for i ∈ [m]. (3.15)

mpτi
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The CORSING solution is then defined by

û := Φx̂ =
∑
j∈[N ]

x̂jϕj . (3.16)

A detailed discussion of the case where x̂ is computed via OMP will be carried out in Section 3.4.

3.3. Restricted isometry property

A first theoretical analysis of the CORSING method was proposed in [16]. The main tool employed is 
the local a-coherence, a generalization of the local coherence [4,35] to bilinear forms in Hilbert spaces that 
implements a preconditioning as suggested in [43].

Definition 3.2 (local a-coherence). Given N ∈ N ∪ {∞}, the sequence μN := (μN
q )q∈N defined by

μN
q := sup

j∈[N ]
|a(ϕj , ξq)|2, q ∈ N, (3.17)

is called the local a-coherence of (ϕj)j∈[N ] with respect to (ξq)q∈N .

In the following, we will assume that μN ∈ �1(N), for every N ∈ N. The next proposition gives a sufficient 
condition on μN and M in order for UN

s and V M to satisfy the inf-sup condition. The result immediately 
follows from [16, Lemma 3.6] and [16, Remark 3.11].

Proposition 3.3. Let s, N, M ∈ N, with s ≤ N , and γ ∈ (0, 1) be such that

∑
q>M

μN
q ≤ α2γcϕcξ

s
. (3.18)

Then,

inf
u∈UN

s

sup
v∈V M

a(u, v)
‖u‖U‖v‖V

≥ (1 − γ) 1
2α. (3.19)

In the following we will assume to have access to a computable (but not necessarily sharp) upper bound 
νN = (νNq )q∈N to the local a-coherence, i.e., μN

q ≤ νNq for all q ∈ N and define

νN,M := (νNq )q∈[M ] ∈ RM . (3.20)

Throughout this section, we choose the probability density p in (3.11) over the test indices as

p := νN,M

‖νN,M‖1
. (3.21)

The analysis carried out in [16] provides sufficient conditions on M and m that guarantee an optimal 
error estimate in expectation for CORSING. Yet, the recovery analysis in [16] has two main limitations: (i) 
m depends quadratically on s (up to logarithmic factors), whereas from the compressive sensing theory 
one expects this dependence to be linear (up to logarithmic factors); (ii) the vector x̂ is assumed to solve 
(3.14) exactly, whereas in practice OMP (or another approach for sparse recovery) has to be employed to 
approximate the solution to (3.14).
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These two issues are fixed in the following. In particular, thanks to the analysis based on the restricted 
isometry property, we show that a linear dependence of m on s (up to logarithmic factors) is sufficient 
and prove a recovery error estimate for the case that the CORSING solution x̂ is approximated via OMP 
(Section 3.4).

We start by defining a condition number of the weak infinite-dimensional problem (3.1) by

κ := CϕCξβ
2

cϕcξα2 , (3.22)

where α and β are the inf-sup and continuity constants of a(·, ·) defined in (3.3) and (3.4), respectively. Of 
course, in general we have κ ≥ 1.

We also introduce the preconditioned and rescaled versions of A and y defined in (3.13) by

Ã := 1
β
√

CϕCξ

DA, ỹ := 1
β
√

CϕCξ

Dy, (3.23)

where D is defined as in (3.15). This normalization ensures that E‖Ãt‖2
2 ≤ ‖t‖2

2 for every t ∈ Σs,N . In this 
setting, the following RIP result holds.

Theorem 3.4 (RIP for the CORSING matrix). There exist universal constants c0, c1 > 0 such that the 
following holds. Let s, N ∈ N with s ≤ N , γ ∈ (0, 1) and choose M = M(s, N, μN ) such that

∑
q>M

μN
q ≤ α2γcϕcξ

s
.

Further, let κ be defined as in (3.22) and let νN,M be defined as in (3.20). Then, for every

ε ∈
(

1 − 1 − γ

κ
, 1
)
, and accordingly η = ε− 1 + 1 − γ

κ
(3.24)

with probability at least

1 − 2 exp
(
−c1

η2mmin{1, C2
ϕC

2
ξβ

4}
s‖νN,M‖2

1

)

the rescaled CORSING matrix Ã defined in (3.23) satisfies the RIP(ε, s) provided that

m ≥ c0
‖νN,M‖2

1
min{1, C2

ϕC
2
ξβ

4} η2 s log(eN) log2

(
s‖νN,M‖2

1
min{1, C2

ϕC
2
ξβ

4} η2

)
. (3.25)

Proof. This theorem is a consequence of Theorem 2.10. In order to apply this result, we need to find 
constants cB and CB such that (2.13) holds.

Let us start by estimating cB. Thanks to Proposition 3.3 and to the Riesz property (3.6) of (ϕj)j∈N and 
(ξq)q∈N , we have

inf
x∈Σs,N\{0}

‖Bx‖2
2

‖x‖2
2

≥ cϕ inf
x∈Σs,N\{0}

‖Bx‖2
2

‖Φx‖2
U

= cϕ

(
inf

x∈Σs,N\{0}
sup

z∈RM\{0}

zTBx

‖Φx‖U‖z‖2

)2

≥ cϕcξ

(
inf

x∈Σs,N\{0}
sup
M

zTBx

‖Φx‖ ‖Ξz‖

)2
z∈R \{0} U 2
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= cϕcξ

(
inf

u∈UN
s \{0}

sup
v∈V M\{0}

a(u, v)
‖u‖U‖v‖V

)2

≥ (1 − γ)cϕcξα2.

Let us now estimate CB . Using the continuity (3.4) of a(·, ·) and the Riesz property, we see that

sup
x∈Σs,N\{0}

‖Bx‖2
2

‖x‖2
2

= sup
x∈Σs,N\{0}

1
‖x‖2

2

∑
j∈[N ]

∑
k∈[N ]

xjxk

∑
q∈[M ]

a(ϕj , ξq)a(ϕk, ξq)

≤ sup
u∈UN

s \{0}

Cϕ

‖u‖2
U

∑
q∈[M ]

a(u, ξq)2.

Notice that for every u ∈ U ,∑
q∈[M ]

a(u, ξq)2 = ‖a(u, · ) ◦ (Ξ|RM )‖2
2 ≤ ‖a(u, · )‖2

V ∗‖Ξ|RM ‖2
RM→V ≤ ‖u‖2

Uβ
2Cξ, (3.26)

where Ξ is the reconstruction operator associated with the test basis (ξq)q∈N and where we have used that 
‖Ξ‖2

�2→V ≤ Cξ and that ‖a(u, · )‖V ∗ ≤ ‖u‖Uβ. Combining the above inequalities yields

sup
x∈Σs,N\{0}

‖Bx‖2
2

‖x‖2
2

≤ β2CϕCξ.

The proof is concluded by applying Theorem 2.10 with cB = (1 − γ)cϕcξα2 and CB = CϕCξβ
2. �

Remark 3.5 (Limitations on ε). Relation (3.24) implies a lower bound for the RIP constant. In particular, 
by letting γ → 0+ in (3.24), we obtain the necessary condition

ε > 1 − 1
κ
. (3.27)

This will imply restrictions on κ to guarantee the recovery via OMP, studied in the next section. Note that 
this restriction on the RIP constant is analogous to the one discussed in Section 2.1.

3.4. Recovery via orthogonal matching pursuit

We study the performance of the CORSING recovery scheme when the approximate solution x̂ to (3.14) is 
computed via OMP. We choose the OMP algorithm thanks to its parallelizability and its ability to control 
the number of iterations, and hence the resulting computational cost, when an estimate of the target sparsity 
is known. In order to prove a precise recovery estimate, we define the output of OMP (Algorithm 3.6) taking 
into account the �2-normalization of the columns (lines 1 and 8 in Algorithm 3.6).

Algorithm 3.6. (Orthogonal Matching Pursuit)
Inputs: A = (a1| · · · |aN ) ∈ Cm×N , b ∈ Cm, s ∈ N

Output: x̂ ∈ Σs,N

Procedure: x̂ = OMP(A, y, s)
1: B ← AR, with Rjk = δjk/‖aj‖2, for j, k ∈ [N ];
2: S ← ∅; x̂ ← 0;
3: for i = 1, . . . , s do
4: k ← arg max

j∈[N ]
|(B∗(y −Bx̂))j |;

5: S ← S ∪ {k};



248 S. Brugiapaglia et al. / Appl. Comput. Harmon. Anal. 53 (2021) 231–269
6: x̂ ← argminz∈CN ‖Bz − y‖2 s.t. supp(z) ⊆ S;
7: end for
8: x̂ ← Rx̂;

The main tool employed here is [29, Theorem 6.25], a recovery theorem for OMP based on the RIP. This 
theorem is the generalization of a result first published in [52]; see also [24]. We give its version in a discrete 
setting and at the same time add a slight generalization regarding the �2-normalization of the columns.

Theorem 3.7. There exist constants K ∈ N, C > 0, and ε∗ ∈ (0, 1) such that for every s ∈ N, the 
following holds. If A ∈ Cm×N satisfies the RIP(ε, (K + 1)s), with ε < ε∗ then, for any y ∈ Cm, the output 
x̂ = OMP(A, y, Ks) of Algorithm 3.6 is such that

‖Ax̂− y‖2 ≤ C inf
z∈Σs,N

‖Az − y‖2.

Possible values for the constants are K = 12, C = 49. Moreover,

ε∗ =
{

1/6 if the columns of A are �2-normalized,
1/13 otherwise.

Proof. If A has �2-normalized columns, then the theorem is a direct consequence of [29, Theorem 6.25]
(with a minor modification of the proof in order to have C infz∈Σs,N

‖Az − y‖2 instead of C‖AxSc − y‖2 in 
the right-hand side of the recovery error bound). The values of the constants K = 12, C = 49 and ε∗ = 1/6
are deduced by a direct inspection of the proof (see, in particular, [29, Proposition 6.24]).

Let us now assume that there exists some j ∈ [N ], with ‖aj‖2 �= 1. First, observe that if A satisfies the 
RIP(ε, (K + 1)s) then 1 − ε ≤ ‖aj‖2

2 ≤ 1 + ε, for every j ∈ [N ]. Then, considering the normalization matrix 
R defined in step 1 of Algorithm 3.6, a direct computation shows that, for every (K + 1)s-sparse vector z, 
it holds

‖ARz‖2
2 ≤ (1 + ε)‖Rz‖2

2 ≤ 1 + ε

1 − ε
‖z‖2

2 =
(

1 + 2ε
1 − ε

)
‖z‖2

2,

and, similarly ‖ARz‖2
2 ≥ (1 −2ε/(1 +ε))‖z‖2

2. Hence, the matrix AR satisfies the RIP(2ε/(1 −ε), (K+1)s). 
Now, defining ẑ := OMP(AR, y, Ks), we have x̂ = Rẑ. Applying [29, Theorem 6.25] to AR, we finally obtain

‖Ax̂− y‖2 = ‖ARẑ − y‖2 ≤ C inf
z∈Σs,N

‖ARz − y‖2 = C inf
z∈Σs,N

‖Az − y‖2,

provided that the RIP constant of AR is less than or equal to 1/6. This is equivalent to require 2ε/(1 −ε) <
1/6, which is equivalent to ε < 1/13 =: ε∗. �
Remark 3.8. An inspection of the argument employed in [29, Theorem 6.25] reveals that the constants K, C, 
and ε∗ of Theorem 3.7 are intertwined. For example, one could relax the condition on ε∗ and consequently 
increase the values of C and K.

Using the notation of Algorithm 3.6, we consider the CORSING solution defined by

û := Φ(OMP(DA,Dy, k)) , (3.28)

where D is as defined in (3.15). Theorem 3.9 shows that, in order to achieve a CORSING error ‖û − u‖U
comparable to the best approximation error of u in UN

s in expectation, it is sufficient to choose k = O(s)
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iterations of OMP in (3.28). Notice that it is possible to show a version of this theorem in probability, 
analogously to [16].

Theorem 3.9 (Recovery guarantee for CORSING). There exist constants K ∈ N, C > 0, and ε∗ ∈ (0, 1) such 
that the following holds. Let ‖u‖U ≤ L for some L > 0 and assume that the constant κ defined in (3.22)
satisfies

κ <
1

1 − ε∗
. (3.29)

Let s, N, M ∈ N, with s ≤ N , and

γ ∈ (0, 1 − (1 − ε∗)κ), ε ∈
(

1 − 1 − γ

κ
, ε∗

)
, (3.30)

be such that the following truncation condition holds:

∑
q>M

μN
q ≤ α2γcϕcξ

(K + 1)s
.

Then, provided that m satisfies (3.25), where η = ε − 1 + 1−γ
κ , the CORSING solution û computed via OMP 

as in (3.28) satisfies

E[‖TLû− u‖U ] ≤
(

1 + 1 + C

(1 − ε) 1
2

)
inf

w∈UN
s

‖u− w‖U + 2Lζ, (3.31)

where TLv := min{1, L/‖v‖U}v and where ζ = 2 exp(− min{1, C2
ϕC

2
ξβ

4}η2m/(512s‖νN,M‖2
1)) bounds the 

failure probability of the RIP. Possible values for the constants are K = 12, C = 49 and ε∗ = 1/13.

Proof. The argument is analogous to that of [16, Theorem 3.13], where the role of the restricted inf-sup 
property is replaced by the RIP. Consider the constants K, C, and ε∗ as in Theorem 3.7 and define the 
event

ΩRIP := {Ã satisfies RIP(ε,K + 1)s)}.

We split the expectation accordingly as

E[‖TL(û) − u‖U ] = E[1ΩRIP‖TL(û) − u‖U ] + E[1ΩC
RIP

‖TL(û) − u‖U ] .

The second term is bounded by 2Lζ, since the adopted choice of M and m guarantees P (Ωc
RIP) ≤ ζ, thanks 

to Theorem 3.4, and due to the truncation via TL.
Now, consider a generic w ∈ UN

s . Observing that TL is 1-Lipschitz with respect to ‖ · ‖U and using the 
triangle inequality, we find

E[1ΩRIP‖TL(û) − u‖U ] = E[1ΩRIP‖TL(û) − TL(u)‖U ] ≤ E[1ΩRIP‖û− u‖U ]

≤ E[1ΩRIP‖û− w‖U ] + E[1ΩRIP‖u− w‖U ]. (3.32)

Notice that the second expectation in (3.32) is trivially bounded by ‖u −w‖U . In order to bound the other 
expectation, we note that x̂ = OMP(DA, Dy, n) = OMP(Ã, ỹ, n) and that Theorem 3.7 holds on the event 
ΩRIP. Therefore, denoting z = Φ∗w, we have the chain of inequalities
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‖û− w‖2
U ≤ Cϕ‖x̂− z‖2

2 ≤ Cϕ

1 − ε
‖Ã(x̂− z)‖2

2 ≤ Cϕ

1 − ε
(‖Ãx̂− ỹ‖2 + ‖Ãz − ỹ‖2)2

≤ Cϕ

1 − ε
(1 + C)2‖Ãz − ỹ‖2

2.

Hence, we estimate

E[1ΩRIP‖û− w‖U ] ≤
√

Cϕ

1 − ε
(1 + C)E[1ΩRIP‖Ãz − ỹ‖2]. (3.33)

Now, exploiting that the τi’s are i.i.d., the Riesz property of (ξq)q∈N (see the definition in (3.23)), and the 
continuity (3.4) of a(·, ·), we have

E[‖Ãz − ỹ‖2
2] = β−2C−1

ϕ C−1
ξ E[‖D(Az − y)‖2

2] = β−2C−1
ϕ C−1

ξ

∑
q∈[M ]

[a(w, ξq) −F(ξq)]2

= β−2C−1
ϕ C−1

ξ

∑
q∈[M ]

a(w − u, ξq)2 ≤ C−1
ϕ ‖w − u‖2

U .

Note that we have used inequality (3.26) in the last step. Now, applying Jensen’s inequality to the previous 
relation we obtain E[‖Ãz − ỹ‖2] ≤ C

−1/2
ϕ ‖w − u‖U , which, combined with (3.33), yields

∫
ΩRIP

‖û− w‖U dP ≤
√

Cϕ

1 − ε
(1 + C)E[‖Ãz − ỹ‖2] ≤

1 + C

(1 − ε) 1
2
‖u− w‖U .

Combining the above inequalities completes the proof. �
Remark 3.10. Plugging ε∗ = 1/13 into relation (3.29), we obtain

κ <
13
12 , (3.34)

which is a very restrictive condition. As already mentioned in Remark 3.8, the value of ε∗ can be made larger, 
in price of larger values of K and C. An interesting open question is whether ε∗ can be made arbitrarily close 
to 1, or if there is a maximal admissible value strictly lower than 1 (see also the discussion in Section 2.1).

We believe that the sufficient condition (3.34) is too conservative. Indeed, numerical experiments show 
the success of the CORSING method in computing accurate sparse approximations via OMP in problems 
where (3.34) is not met (e.g., advection-dominated problems), see [15,12,16]. Bridging this gap between 
theory and practice and showing recovery guarantees for OMP without assuming (3.34) is left to future 
work.

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Recall that X ∈ CN is a random vector with bounded components, 
i.e., for all i ≤ N : |〈X, ei〉| ≤ K, where e1, . . . , eN denotes the standard basis of CN and that X1, . . . , Xm

are independent copies of X. We aim to bound

sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,X〉|2
∣∣∣ , (4.1)

for T ⊆ √
sBN

1 . Let us recall the following deviation inequality for the empirical process [11, Theorem 2.3].
�
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Theorem 4.1. Let F be a class of functions f : S → R on some set S and let X1, . . . , Xm denote independent 
S-valued random variables, which are independent copies of random variable X. Set

ZF = sup
f∈F

∣∣∣ m∑
i=1

f(Xi) − Ef(X)
∣∣∣ , σ2

F = sup
f∈F

Ef(X)2 and βF = sup
f∈F

‖f‖L∞ .

Then, for any u > 0,

P
(
ZF ≥ EZF +

√
2u(σ2

F + 2βFEZF ) + 1
3βFu

)
≤ 2 exp(−u) . (4.2)

Theorem 4.1 is related to Talagrand’s concentration inequality for the empirical process. We employ 
Theorem 4.1’s inequality by considering FT = {|〈f, ·〉|2 : f ∈ T} for the set T ⊆ √

sBN
�1 . In this case, for 

any u ≥ 0, the event of (4.2) reads

sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,X〉|2
∣∣∣ ≤ E sup

f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,X〉|2
∣∣∣

+
√

2u 1
m

(
σ2
FT

m + 2βF sup
f∈T

∣∣∣ m∑
i=1

|〈f,Xi〉|2 − E|〈f,X〉|2
∣∣∣) 1

2 + 1
3βFT

u

m
.

Now using the fact that X has bounded coordinates, we obtain that

E|〈f,X〉|4 ≤ sK2 sup
f∈T

E|〈f,X〉|2 and sup
f∈T

‖|〈f,X〉|2‖L∞ ≤ K2s .

Hence, if we set u = δ2m/(K2s) for δ ∈ (0, 1), then Theorem 4.1 yields that with probability at least 
1 − 2 exp(−δ2m/(K2s)),

sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,X〉|2
∣∣∣ ≤ E sup

f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,X〉|2
∣∣∣

+
(
2δ2 sup

f∈T
E|〈f,Xi〉|2 + 4δ2 sup

f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,X〉|2
∣∣∣) 1

2 + δ2

3 .

(4.3)

It remains to estimate the expectation of the process in (4.1). By symmetrization [36, Lemma 6.3],

E sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,X〉|2
∣∣∣ ≤ 2E sup

f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2εi
∣∣∣ , (4.4)

where (εi)i∈[m] denotes a sequence of independent symmetric Bernoulli random variables, also independent 
of (Xi)i∈[m]. The following theorem provides a bound for the right-hand-side of (4.4).

Theorem 4.2. Let T ⊆ √
sBN

�1 and let δ ∈ (0, 1). Then, the following holds:

E sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2εi
∣∣∣

≤ (280 + 200
√

2)

√
sK2 log2(sK2/δ) log(eN)

m

(
E sup

f∈T

1
m

m∑
i=1

|〈f,Xi〉|2
)1/2

+ (69 + 49
√

2) δ
m∑

|〈f,Xi〉|2 + (643 + 468
√

2) δm .

i=1
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Let us observe that this bound implies a bound for the right-hand side of (4.4) provided that δ ∈ (0, 1)
is small enough.

Corollary 4.3. Let T ⊆ √
sBN

�1 and let δ ∈ (0, 1
28 (10 − 7

√
2)). Assume that

m ≥ 1600(99 + 70
√

2) δ−2sK2 log(sK2/δ)2 log(eN) . (4.5)

Then, the following holds:

E sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,X〉|2
∣∣∣ ≤ 8(161 + 117

√
2) δ + 14(10 + 7

√
2) δ sup

f∈T
E|〈f,X〉|2 .

Proof. Let T ⊆ √
sBN

�1 and δ ∈ (0, 1/218). Choosing m ≥ cδ−2sK2 log(sK2/δ)2 log(eN) for an appropriate 
absolute constant c ≥ 1600(99 + 70

√
2), it follows from (4.4) and Theorem 4.2, that

E sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,Xi〉|2
∣∣∣ ≤ 2δ

(
E sup

f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2
∣∣∣)1/2

+ (69 + 49
√

2) δ
m∑
i=1

|〈f,Xi〉|2 + (643 + 468
√

2) δm .

By the arithmetic-mean-geometric-mean inequality we have

δ
(
E sup

f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2
∣∣∣)1/2

=
√
δ
(
δE sup

f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2
∣∣∣)1/2

≤ δ

2 + δ

2E sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2
∣∣∣ .

Combining this with the fact that

E sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2
∣∣∣ ≤ E sup

f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,X〉|2
∣∣∣ + sup

f∈T
E|〈f,X〉|2 ,

we obtain the inequality

E sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,Xi〉|2
∣∣∣

≤ (70 + 49
√

2) δE sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,X〉|2
∣∣∣

+ (70 + 49
√

2)δ sup
f∈T

E|〈f,X〉|2 + (644 + 468
√

2)δ .

(4.6)

Assuming that δ ∈ (0, 1
28 (10 − 7

√
2)), we conclude from (4.6), that

sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,Xi〉|2
∣∣∣ ≤ 8(161 + 117

√
2) δ + 14(10 + 7

√
2) δ sup

f∈T
E|〈f,X〉|2 .

This implies the desired estimate. �
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With this estimate all pieces are in place to deduce Theorem 1.1.

Proof of Theorem 1.1. Combining Corollary 4.3 with the event (4.3), it follows that with probability at 
least 1 − 2 exp(−δ2m/(K2s)),

sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,X〉|2
∣∣∣

≤ 8(161 + 117
√

2)δ + 14(10 + 7
√

2) sup
f∈T

E|〈f,X〉|2

+
√

2δ
(

sup
f∈T

E|〈f,Xi〉|2 + 8(161 + 117
√

2)δ + 14(10 + 7
√

2)δ sup
f∈T

E|〈f,X〉|2
) 1

2 + δ2

3 .

Using the arithmetic-mean-geometric-mean inequality, we find

√
2δ
(

sup
f∈T

E|〈f,Xi〉|2 + 8(161 + 117
√

2)δ + 14(10 + 7
√

2)δ sup
f∈T

E|〈f,X〉|2
) 1

2

≤ δ + δ

2 sup
f∈T

E|〈f,Xi〉|2 + 8(161 + 117
√

2)δ
2

2 + 14(10 + 7
√

2)δ
2

2 sup
f∈T

E|〈f,X〉|2

Hence, on the same event and using the fact that δ < 1,

sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2 − E|〈f,X〉|2
∣∣∣ ≤ 1

6(1457 + 1053
√

2)δ + 1
2(421 + 294

√
2)δ sup

f∈T
E|〈f,X〉|2 .

This implies the theorem, since 1
2 (421 + 294

√
2) < 1

6 (1457 + 1053
√

2) < 492. �
We are left with establishing Theorem 4.2. The proof of this theorem will occupy the rest of this section. 

In order to establish Theorem 4.2 we will start by introducing a general quantity, which can control the 
Bernoulli process. This quantity is a mixture of an �1 approximation term and a finite precision approxi-
mation of a γ2 functional (the meaning of the term “finite precision” will be clarified in Section 4.2).

4.1. Generic chaining

Let (T, d) denote a (semi-)metric space. An increasing sequence (An)n≥0 of subsets of T is called admis-
sible if, for all n ≥ 0, |An| ≤ 22n . For a set A ⊆ T we set d(A, x) = infa∈A d(a, x). A central object of study 
in generic chaining are the functionals

γα(T, d) := inf
A

sup
t∈T

∑
n≥1

2n
α d(An, t) , (4.7)

where the infimum is taken over all admissible sequences A = (An)n≥0 of subsets of T .

4.2. Bounding the Bernoulli process

In this section we consider subsets U of the space Rm equipped with the Euclidean distance and study 
bounds for the Bernoulli process given by

sup
x∈U

m∑
xiεi , (4.8)
i=1
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where, as before, (εi)i≤m is a sequence of independent symmetric Bernoulli random variables. The set U
will later be replaced by the set of sequences {(|〈f, Xi〉|2)i≤m : f ∈ T} for some T ⊆ √

sBN
�1 . With the 

intention of keeping the necessary notation as simple as possible, we formulate the results of this section in 
terms of subsets of Rm.

Hoeffding’s inequality implies that increments of the process supx∈U | 
∑m

i=1 xiεi| are subgaussian 
with respect to the Euclidean metric on Rm. Combining this observation with the trivial bound 
supx∈U | 

∑m
i=1 xiεi| ≤ supx∈U ‖x‖1 and a standard generic chaining argument yields the bound (see [47], in 

particular the discussion at the beginning of chapter 5)

E sup
x∈U

m∑
i=1

xiεi ≤ b(U) := inf
U⊆U1+U2

{
sup
x∈U1

‖x‖1 + γ2(U2, ‖ · ‖2)
}
. (4.9)

For our result, we are only interested in a finite precision approximation for the Bernoulli process 
supx∈U | 

∑m
i=1 xiεi|. We therefore propose to substitute b(U) by a finite precision version, which is able 

to control the left hand side of (4.9). The following result is implicitly stated in [47]. A proof is provided for 
the convenience of the reader.

Lemma 4.4. Let U ⊆ Rm. Let n0, � > 0, let (An)n≥n0 denote any admissible sequence for U and let πn :
U → An be generic maps for n ≥ n0. Moreover, let πn(x) = 0 for every x ∈ U , for n < n0. Then, there is 
a constant c(n0) ∈ (1, 2) such that

E sup
x∈U

∣∣∣ m∑
i=1

xiεi

∣∣∣ ≤ sup
x∈U

‖x− πn0+�(x)‖1 + c(n0) sup
x∈U

n0+�∑
n=n0

2n
2 ‖πn(x) − πn−1(x)‖2 . (4.10)

Proof. For n < n0 we set πn(x) = 0. Fix � > 0 and observe that

∣∣∣ m∑
i=1

xiεi

∣∣∣ =
∣∣∣ m∑
i=1

εi(xi − πn0+�(x)i) +
n0+�∑
n=n0

m∑
i=1

εi(πn(x) − πn−1(x))i
∣∣∣

≤‖x− πn0+�(x)‖1 +
n0+�∑
n=n0

∣∣∣ m∑
i=1

εi(πn(x) − πn−1(x))i
∣∣∣ .

For x ∈ Rm let Zx =
∑m

i=1 εixi denote the associated random variable. Taking suprema on each side in the 
inequality above yields

sup
x∈U

∣∣∣ m∑
i=1

εixi

∣∣∣ ≤ sup
x∈U

‖x− πn0+�(x)‖1 + sup
x∈U

n0+�∑
n=n0

|Zπn(x) − Zπn−1(x)| . (4.11)

By Hoeffding’s inequality (see, e.g., [7]) we obtain the estimate

P
(
|Zπn(x) − Zπn−1(x)| > 2n

2 u‖πn(x) − πn−1(x)‖2

)
≤ 2e−2n−1u2

(4.12)

Since (An)n≥n0 is admissible there are at most |An||An−1| ≤ 22n+1 pairs of the form (πn(x), πn−1(x)) and 
it follows by a union bound that the event Ωn(u)

∀(πn(x), πn−1(x)) ∈ An ×An−1 : |Zπn(x) − Zπn−1(x)| ≤ 2n
2 u‖πn(x) − πn−1(x)‖2 (4.13)
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occurs with probability at least 1 − 2 · 22n+1
e−2n−1u2 . Therefore, a union bound over n = n0, . . . , n0 + �

yields, that the probability that the event Ω(u) =
⋃n0+�

n=n0
Ωn(u) does not occur is bounded by

2
n0+�∑
n=n0

22n+1
e−2n−1u2 ≤ 2e−u2/2

n0+�∑
n=n0

22n+1
e−2n+1 ≤ 2κ(n0)e−u2/2 , (4.14)

where κ(n0) =
∑n0+�

n=n0
(2/e)n and where we used that u22n−1 ≥ u2/2 + u22n−2 ≥ u2/2 + 2n+1 holds for 

n ≥ 1 and u ≥ 1. On the event Ω(u), the inequality (4.11) reads

sup
x∈U

|Zx| ≤ sup
x∈U

‖x− πn0+�(x)‖1 + u sup
x∈U

n0+�∑
n=n0

2n
2 ‖πn(x) − πn−1(x)‖2 .

This implies that the following tail bound is valid for supx∈U |Zx|, n0 ≥ 1 and u ≥ 1,

P
(

sup
x∈U

|Zx| > sup
x∈U

‖x− πn0+�(x)‖1 + u sup
x∈U

n0+�∑
n=n0

2n
2 ‖πn(x) − πn−1(x)‖2

)
≤ 2κ(n0) e−u2/2 . (4.15)

Set d1 = supx∈U ‖x −πn0+�(x)‖1 and d2 = supx∈U

∑n0+�
n=n0

2n
2 ‖πn(x) −πn−1(x)‖2. Then, integrating the tail 

bound (4.15) yields

E

[
sup
x∈T

|Zx|
]

=
∞∫
0

P

(
sup
x∈T

|Zx| ≥ t

)
dt ≤ d1 + d2

∞∫
0

P

(
sup
x∈U

|Zx| ≥ d1 + ud2

)
du

≤ d1 +

⎛⎝2κ(n0)
∞∫
1

e−u2/2du + 1

⎞⎠ d2

≤ d1 + (4
5κ(n0) + 1)d2,

where we used the change of variable t = d1 + ud2. This, shows that the desired estimate is true for 
c(n0) = 4

5κ(n0) + 1 > 0. Now, observe that by the definition of κ(n0),

κ(n0) ≤
(

2
e

)2n0+1 ∞∑
n=0

(
2
e

)n

=
(

2
e

)2n0+1
e

e− 2 ≤ 111
100 .

This finishes the proof. �
This lemma leads us to introduce the following definition.

Definition 4.5. Let U ⊆ Rm and let A denote the set of all admissible sequences (An)n≥n0 in U . For each 
admissible sequence let πn : U → An denote a generic map. For n0, � > 0 we define

bn0,�(T ) := inf
A

{
sup
x∈T

‖x− πn0+�(x)‖1 + c(n0) sup
x∈T

n0+�∑
n=n0

2n
2 ‖πn(x) − πn−1(x)‖2

}
.

In order to find a bound for bn0,�(U) and hence for supx∈U |
∑m

i=1 xiεi| given a fixed set U ⊆ Rm it suffices 
to identify a suitable admissible sequence (An)n≥n0 .
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4.3. Estimating bn0,�(T )

Returning to our initial setting we are looking for estimates of

sup
f∈T

m∑
i=1

|〈f,Xi〉|2εi ,

for a set T ⊆ √
sBN

�1 . By Lemma 4.4 it suffices to bound bn0,�({(|〈f, Xi〉|2)i≤m : f ∈ T}). Such bounds can 
be achieved by constructing a suitable admissible sequence (An)n≥n0 in the set {(|〈f, Xi〉|2)i≤m : f ∈ T}. 
In this section we provide such an admissible sequence for bn0,�({(|〈f, Xi〉|2)i≤m : f ∈ T}) based on an 
inital covering of the set {(〈f, Xi〉)i∈[m] : f ∈ T} with respect to the (semi-)norms ‖x‖I defined below. The 
construction is based on the notion of a weak covering of a set T ⊆ CN , which is explained in the following 
subsection.

4.3.1. Weak coverings
We start by defining the empirical seminorms

‖x‖I,X := max
i∈[m]\I

|〈Xi, x〉|,

where I ⊆ [m] and X = (X1, . . . , Xm) denotes a realization of the random vectors in question. Let BI,X :=
{x ∈ CN : ‖x‖I,X ≤ 1} denote the unit balls with respect to the seminorm ‖ · ‖I,X. In the following we will 
be interested in covering a set T ⊆ CN by the following family of sets for a given width ρ > 0,

B(ρ,M) := {ρBI,X : I ⊆ [m], |I| ≤ M} . (4.16)

Definition 4.6. Let ρ, M > 0. We say that T ⊆ CN is weakly covered by B(ρ, M), if for some r ∈ N, there 
exits x1, . . . , xr ∈ CN and sets B1, . . . , Br ∈ B(ρ, M), such that

T ⊆
r⋃

i=1
(xi + Bi) . (4.17)

We call the smallest r ∈ N such that (4.17) is satisfied the weak covering number of T and denote this 
number by N ∗(T, ρ, k). Moreover, we refer to the set {x1, . . . , xr} as weak covering or net.

For sets T ⊆ √
sBN

�1 ⊂ CN , Maurey’s empirical method can be used to estimate the size of a weak 
covering of T .

Lemma 4.7 (Maurey’s empirical method). Let T ⊆ √
sBN

�1 , δ ∈ (0, 1), ρ > 0 and X1, . . . , Xm denote random 
vectors with bounded coordinates. Then,

logN ∗
(
T, ρ,

4δm
sK2 log2(sK2/δ)

)
≤ 2 log2(sK2/δ) log2(2N)sK2

ρ2 . (4.18)

Proof. We observe that every x ∈ T ⊆ √
sBN

�1 is a convex combination of V = {±√
sej ±√

siej : j ∈ [N ]}, 
i.e. there is a sequence (λv)v∈V with λv ≥ 0 and 

∑
v∈V λv = 1, such that 

∑
v∈V λvv = x. For a fixed 

x ∈ T ⊆ √
sBN

�1 the associated sequence λ = (λv)v∈V defines a probability distribution on V . Let Z denote 
a random vector in V with distribution λ and let Zl for l = 1, . . . , L denote independent copies of Z. Set 
L = �K2sρ−2 log2(sK2 log2(sK2/δ)/δ)� and consider the random set
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J =
{
i ∈ [m] :

∣∣∣〈Xi, x〉 −
1
L

∑
l≤L

〈Xi, Zl〉
∣∣∣ > ρ

}
.

For this set we will bound the probability of the event, that |J | ≥ δm/(sK2 log2(sK2/δ)). Recall that for 
l = 1, . . . , L we have EZl

〈Xi, Zl〉 = 〈Xi, x〉. By Hoeffding’s inequality it follows that for every i ∈ [m]

PZ1,...,ZL

(
i ∈ J

)
≤ 2 exp(−Lρ2/(s‖Xi‖2

∞)) ≤ 2δ
sK2 log2(sK2/δ) ,

where we used that |〈Xi, Zl〉| ≤
√
s‖Xi‖∞ ≤ √

sK for every i ∈ [m] and l ∈ [L]. Hence, we have 
EZ1,...,ZL

|J | ≤ 2δm
sK2 log2(sK2/δ) . Using Chebyshev’s inequality it follows that

PZ1,...,ZL

(
|J | ≥ 4δm

s log(sK2/δ)

)
≤ EZ1,...,ZL

|J |s log2(sK2/δ)
4δm ≤ 1

2 .

Therefore, we can find a realization of Z1, . . . , ZL, such that |J | ≤ 4δm
s log2(s/δ)

. For this realization we have

∥∥∥x− L−1
∑
l≤L

Zl

∥∥∥
J,X

= max
i∈[m]\J

∣∣∣〈Xi, L
−1

∑
l≤L

Zl − x
〉∣∣∣ ≤ ρ .

Since x ∈ T is arbitrary, by considering all possible realizations of L−1 ∑
l≤L Zl we obtain a weak covering 

of T . For the choice of L = �ρ−2sK2 log2(sK2 log2(sK2/δ)/δ)� ≤ 2�ρ−2sK2 log2(sK2/δ)� we have at most 
|V |L = (2N)L ≤ (2N)2ρ−2K2s log2(sK

2/δ) realizations of Z1, . . . , ZL. This implies the desired result. �
Based on this estimate we derive the following result, which provides the promised admissible sequence.

Theorem 4.8. Let T ⊆ √
sBN

�1 and let δ ∈ (0, 1). For n0 = �log2 log2(2N) + log2 log2(sK2/δ)� and � =
�log2(sK2/δ)� there is an admissible sequence (An)n≥n0 for T , such that

• For all f ∈ T we have

‖(|〈f,Xi〉|2)i∈[m] − πn0+�(|〈f,Xi〉|2)i∈[m]‖1

≤ (69 + 49
√

2) δ
m∑
i=1

|〈f,Xi〉|2 + (643 + 468
√

2) δm .
(4.19)

• For all f ∈ T we have

n0+�−1∑
n=n0

2n
2 ‖(|〈πn+1(f), Xi〉|2)i∈[m] − (|〈πn(f), Xi〉|2)i∈[m]‖2

≤ (200 + 140
√

2)
√
�sK2

n0
2

( m∑
i=1

|〈f,Xi〉|2
)1/2

.

(4.20)

Theorem 4.8 directly implies a bound for bn0,�({(|〈f, Xi〉|2)i∈[m] : f ∈ T}) with T ⊆ √
sBN

�1 and henceforth 
it implies a bound for the expectation of (4.1). We remark that the size of n0 is determined by the initial 
estimate given in Lemma 4.7, while the parameter � depends on the desired approximation accuracy δ ∈ (0, 1)
and the �∞-diameter of the set {(〈f, Xi〉)i∈[m] : f ∈ T}.
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4.3.2. Construction of an admissible sequence and proof of Theorem 4.8
The goal of this section is ultimately to bound bn0,�(T ) for a subset T ⊂ √

sBN
�1 , thereby identifying 

n0, � > 0. The plan is to achieve a bound for bn0,�(T ) by means of constructing an admissible sequence 
(An)n≥n0 (see (4.27) below). The main point here is to ensure that the admissible sequence (An)n≥n0

balances the bounds for the terms

sup
x∈T

‖x− πn0+�(x)‖1 and sup
x∈T

n0+�−1∑
n=n0

2n
2 ‖πn+1(x) − πn(x)‖2 .

The approach of this section is based on ideas in [9,30]. The argument we propose is based on the observation 
that we have to deal with sequences (|〈f, Xi〉|2)i∈[m] for f ∈ T and aims at organizing the admissible sequence 
(An)n≥n0 around this fact. A vital observation is that for a fixed i ∈ [m] we have∣∣∣|〈f,Xi〉|2 − |〈g,Xi〉|2

∣∣∣ ≤ 2 max{|〈f,Xi〉|, |〈g,Xi〉|}|〈f,Xi〉 − 〈g,Xi〉| .

We leverage this by coupling the approximation of |〈f, Xi〉|2 in the �∞-norm to the size of the coefficients 
of the sequence (|〈f, Xi〉|2)i∈[m]. This gives us a quasi-�∞-control along the chain. This �∞-control allows 
us to simultaneously bound the differences ‖πn+1(x) − πn(x)‖2 and, if � is sufficiently large, to bound 
‖x − πn0+�(x)‖1.

Henceforth, we will use the following notation. For an element f ∈ T ⊆ √
sBN

�1 and a realization of 
X1, . . . , Xm we write fX = (〈f, Xi〉)i∈[m] and |fX|2 = (|〈f, Xi〉|2)i∈[m]. Further, for the rest of this section 
we fix an approximation accuracy δ ∈ (0, 1). Let k0 denote a positive integer satisfying k0 = �log2(1/δ2)�. 
Moreover, we let � = �log2(sK2/δ)� and n0 = �log2 log2(2N) + log2 log2(sK2/δ)� as in the setting of 
Theorem 4.8.

Let us start by observing that Lemma 4.7 shows that for T ⊂ √
sBN

�1 there is a sequence of weak coverings 
for the parametrized families of sets B(ρn, M) with

ρn =
√
sK2−n/2 for n = 0, . . . , � + k0 , and M = 4δm

sK2 log2(sK2/δ) . (4.21)

We denote the associated nets as Ãn0+n, for n = 0, . . . , � + k0. By (4.18) and since n0 ≥ log2 log2(2N) +
log2 log2(sK2/δ), the weak nets Ãn0 , . . . , Ãn0+�+k0 corresponding to ρ0, . . . , ρ�+k0 and M as in (4.21) satisfy

|Ãn0+n| ≤ 2log2(2N) log2(sK
2/δ)K2s/ρ2

n = 2log2(2N) log2(sK
2/δ)·2n ≤ 22n0+n

,

and are therefore admissible sequences in T . For each weak covering An0+n = {x1, . . . , xr} any point xi for 
i = 1, . . . , r comes with its own unitball. Hence, each point in xi for i = 1, . . . , r is only correctly described 
by the tuple (xi, ‖ · ‖X,Ii) for i = 1, . . . , r. Let us therefore agree on the following notation. For each f ∈ T

we denote by π̃n0+n(f) any element x ∈ Ãn0+n of the weak net Ãn0+n = {x1, . . . , xr} that satisfies

‖x− π̃n0+n(f)‖Ĩn0+n(f),X = min
i=1,...,r

‖f − xi‖Ii,X,

for a suitable Ĩn0+n(f) ⊆ [m] with |Ĩn0+n(f)| ≤ M such that the pair (π̃n0+n(f), ‖ · ‖Ĩn0+n(f)) is an element 
of {(xi, ‖ ·‖Ĩn0+n(f)))}i∈[r]. By the same token we also introduce another piece of notation, which is necessary 
because of the nature of the seminorms ‖ · ‖X,I . As pointed out above, by the definition of ‖ · ‖X,I each 
approximant π̃n0+n(f) is associated with a set I satisfying |I| ≤ M , such that |〈f − π̃n0+n(f), Xi〉| > ρn for 
all i ∈ I. Let us therefore define,

In0+n(f) := {i ∈ [m] : |〈f − π̃n0+n(f), Xi〉| > ρn} . (4.22)
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We denote the sequence π̃n0(f), . . . , ̃πn0+n(f) by In(fX).
We refine the admissible sequence (Ãn0+n)�+k0

n=0 based on our chosen approximation accuracy δ > 0. For 
each f ∈ T and some n ∈ N we consider the tuple (π̃n0(f), . . . , ̃πn0+n(f)) and inductively define sets 
(En0+n)�n=0 as En0−1 := ∅ and, for n = 0, . . . , �, as

En0+n = En0+n(fX) := {i ∈ [m] : |〈π̃n0+n(f), Xi〉| ≥
√

2 · ρn} \
⋃
k<n

En0+k(fX) . (4.23)

We define an admissible sequence of approximations for an element f ∈ T based on the data (π̃n0+n(f))�+k0
n=0

and the associated sets (En0+n(fX))�n=0. For each sequence |fX|2, we set

π∗
n,k|fX|2 :=

{
(|〈π̃n0+k(f), Xi〉|21En0+n

(i))i∈[m] , if k ∈ [n, n + k0],
0, if k /∈ [n, n + k0].

(4.24)

We also introduce the notation π∗
n,k|〈f, Xi〉|2 for the i-th component of π∗

n,k|fX|2. Given these maps and 
using this shorthand notation, we set

π#
k,l|〈f,Xi〉|2 :=

{
π∗
k,l|〈f,Xi〉|2 − π∗

k,l−1|〈f,Xi〉|2 =: θ, if |θ| ≤ (11 + 9
√

2) ρkρl,
0, otherwise,

(4.25)

for every i ∈ [m] and

πn0+n+1|〈f,Xi〉|2 :=
∑
k≤n

∑
l∈[k,k+k0]

π#
k,l|〈f,Xi〉|2 , (4.26)

for all i ∈ [m]. The associated sequence of sets An0+n+1 is the range of the maps πn0+n+1 : T → An0+n+1

for n = 0, . . . , � − 1, i.e.

An0+n+1 :=
{(∑

k≤n

∑
l∈[k,k+k0]

π#
k,l|〈f,Xi〉|2

)
i∈[m]

: f ∈ T
}
. (4.27)

Moreover, for n = −1, note that πn0 |fX| = 0 and An0 = {0}. To show that the sequence of sets (An0+n)�−1
n=0

we need to provide a bound for the size of An0+n for each n = 0, . . . , � − 1. We recall that by construction 
|Ãn| ≤ 22n provided that n ≥ n0. Moreover, for each n ∈ [0, �] and every f ∈ T we have that the elements 
in An0+n are determined by the first n elements π̃n0(f), . . . , ̃πn0+n−1(f). Hence,

|An0+n| ≤
∏

k≤n−1

|Ãn0+k| ≤ 2
∑

k≤n−1 2k

≤ 22n−1 ≤ 22n

.

Therefore, the sequence (An)n0+�
n=n0

is an admissible sequence for T . Before we turn to the proof of Theorem 4.8
let us observe the following fact concerning the �∞-norm of the approximants, which will come handy in 
proofing Theorem 4.8. For each f ∈ T the definition (4.25) implies that,
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max
i∈[m]

πn0+n|〈f,Xi〉|2 ≤
n−1∑
k=0

∑
l∈[k,k+k0]

π#
k,l|〈f,Xi〉|2

≤ (11 + 9
√

2)
√
sK2

∑
k≤n−1

2−k
k0∑
l=0

2−l/2

≤ (11 + 9
√

2)
√
sK2

∞∑
k=0

2−k
∞∑
l=0

2−l/2

≤ (80 + 58
√

2)
√
sK2 .

(4.28)

Now that these estimates are in place we are left with ensuring the properties of this sequence claimed by 
Theorem 4.8. We have split this task into several lemmas, which can be combined to three leading principles 
for the admissible sequence, �2-stability, γ2-boundedness and �1-approximation.

• �2-stability. Lemma 4.9 contains the observation that for i ∈ En0+n the approximants 〈π̃n0+n(f), Xi〉
have size roughly equal to ρn. In line with this observation is Lemma 4.11, which states that the sequence 
(|En0+n|ρ2

n)�n=0 captures essentially the �2-norm of (〈f, Xi〉)i∈[m].
• γ2-boundedness. Lemma 4.10 provides the key bound for ‖πn0+n+1|fX|2 − πn0+n|fX|2‖2 and therefore 

a bound for the rightmost term in bn0,�(T ).
• �1-approximation. Lemma 4.12 finally provides a bound for the �1-approximation term and is the last 

step towards proving Theorem 4.8.

We start with the observation regarding the interplay between the approximants π̃n0+n(f) and the sets 
En0+n.

Lemma 4.9. Let � > 0, f ∈ T ⊆ √
sBN

�1 and let X1, . . . , Xm denote realizations of X. Let πn+1 : T →
An+1 be defined as in (4.26), (4.25), and (4.24) and let En0 , . . . , En0+� denote the associated sets defined 
as in (4.23). Then, for all n = 0, . . . , �, k ∈ [n, n + k0] and for all i ∈ [m] \

⋃
n≤� In0+n(f) we have 

1En0+n
(i)|〈π̃n0+k(f), Xi〉| ≤ (3 +

√
2)ρn.

Proof. We first observe that if n = 0 the definition of the nets Ãn0+n implies that for each i ∈ [m], 
|〈π̃n0(f), Xi〉| ≤ ‖π̃n0(f)‖1K ≤ ρ0 and, if n ≥ 1, the definition (4.23) of the set En0+n implies that 
1En0+n

(i)|〈π̃n0+n−1(f), Xi〉| ≤
√

2 · ρn−1. Further, by definition (4.22) of the sets In0+n(f), for all i ∈ [m]
outside of the set 

⋃
n≤� In0+n(f) the estimates | |〈π̃n0+k(f), Xi〉| −|〈f, Xi〉| | ≤ ρk and | |〈π̃n0+n−1(f), Xi〉| −

|〈f, Xi〉| | ≤ ρn−1 hold simultaneously. Recalling the definition (4.21) of ρn, it follows that

|〈π̃n0+k(f), Xi〉|1En0+n
(i) ≤ 1En0+n

(i)(|〈f,Xi〉| + ρk)

≤ 1En0+n
(i)(|〈π̃n0+n−1(f), Xi〉| + ρn−1 + ρk)

≤ (3 +
√

2)ρn .

(4.29)

This concludes the proof. �
Let us further observe that by a similar argument as in the lemma we find that for each i ∈ [m] \⋃

n≤� In0+n(f), and for each n = 0, . . . , � we have the bounds

√
2ρn ≤ 1En0+n

(i)|〈π̃n0+n(f), Xi〉| ≤ 1En0+n
(i)|〈f,Xi〉| + ρn

and
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1En0+n
(i)|〈f,Xi〉| ≤ 1En0+n

(i)|〈π̃n0+n(f), Xi〉| + ρn ≤ (4 +
√

2)ρn .

In conjunction with Lemma 4.9 these bounds imply that for i ∈ [m] \
⋃

n≤� In0+n(f) and n = 0, . . . , �,

(4.30) if i ∈ En0+n, then for all k ∈ [n, n + k0], |〈π̃n0+k(f), Xi〉|2 ≤ (3 +
√

2)2ρ2
n,

(4.31) if i ∈ En0+n, then (
√

2 − 1)2ρ2
n ≤ |〈f, Xi〉|2 ≤ (

√
2 + 4)2ρ2

n.

Lemma 4.10. Let (An)n≥n0 be as in (4.27), f ∈ T ⊆ √
sBN

�1 and En0 , . . . , En0+� defined as in (4.23). Then,

‖πn0+n+1|fX|2 − πn0+n|fX|2‖2 ≤ (40 + 29
√

2)
√

|En0+n|ρ2
n .

Proof. Let f ∈ T . Expanding the short-hand notation |fX|2 and the �2 norm, we have

‖πn0+n+1|fX|2 − πn0+n|fX|2‖2 =
( m∑

i=1
(πn0+n+1|〈f,Xi〉|2 − πn0+n|〈f,Xi〉|2)2

)1/2
. (4.32)

Recalling the definition (4.26) of πn|〈f, Xi〉|2 for each i ∈ [m], we find that the right hand side of (4.32) is 
equal to

( m∑
i=1

(∑
k≤n

∑
l∈[k,k+k0]

π#
k,l|〈f,Xi〉|2 −

∑
k≤n−1

∑
l∈[k,k+k0]

π#
k,l|〈f,Xi〉|2

)2)1/2

=
( m∑

i=1

( ∑
l∈[n,n+k0]

π#
n,l|〈f,Xi〉|2

)2)1/2
. (4.33)

By definition (4.25) and recalling (4.24), we see that the support of the approximant (π#
n,l|〈f, Xi〉|2)i∈[m] is 

contained in the intersection of En0+n and the set

Jn,l := {i ∈ [m] : ||〈π̃n0+l(f), Xi〉|2 − |〈π̃n0+l−1(f), Xi〉|2| ≤ (11 + 9
√

2) ρnρl} .

Hence, we can rewrite the above sum in (4.33) as

( m∑
i=1

(1En0+n
(i)

∑
l∈[n,n+k0]

1Jn,l
(i)(|〈π̃n0+l(f), Xi〉|2 − |〈π̃n0+l−1(f), Xi〉|2)2

)1/2

≤ (11 + 9
√

2)
( m∑

i=1

(
1En0+n

(i)ρn
∑

l∈[n,n+k0]

1Jn,l
(i)ρl

)2)1/2

Recalling that ρl = K
√
s2−l/2 this implies∑
l∈[n,n+k0]

ρl = K
√
s

∑
l∈[n,n+k0]

2−l/2 = K
√
s2−n/2

∑
l∈[0,k0]

2−l/2

≤ K
√
s2−n/2

∞∑
l=0

2−l/2 ≤
√

2√
2 − 1

K
√
s2−n/2.

Hence, the right hand side of (4.32) is bounded by

(40 + 29
√

2) ρn
( m∑

i=1
1En0+n

(i)(2K
√
s2−n/2︸ ︷︷ ︸
=ρn

)2
)1/2

≤ (40 + 29
√

2)
√
|En0+n|ρ2

n .
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Combining the above inequalities, we obtain the desired estimate. �
Lemma 4.11. Let En0 , . . . , En0+� be the sets associated with πn0+�|fX|2, defined as in (4.23). Then, for every 
realization of X1, . . . , Xm and for every f ∈ T ⊆ √

sBN
�1 , we have

(
√

2 − 1)2
∑
n≤�

|En0+n|ρ2
n ≤

m∑
i=1

|〈f,Xi〉|2 . (4.34)

Proof. The sets (En0+n)�n=0 together with the set E∗ := {i ∈ [m] : |〈π̃n0+�(f), Xi〉| <
√

2ρ�} form a partition 
of the set [m]. Let I�(fX) = (In0(f), . . . , In0+�(f)) denote the sets associated with the initial approximants 
defined in (4.22). Then, by definitions (4.23) and (4.22), and using the fact that the sets (En0+n)�n=0 are 
disjoint, for every i ∈ [m] \

⋃
n≤� In0+n(f), we see that

|〈f,Xi〉| ≥
∑
n≤�

|〈f,Xi〉|1En0+n
(i)

≥
∑
n≤�

|〈π̃n0+n(f), Xi〉|1En0+n
(i) − ρn1En0+n

(i)

≥
∑
n≤�

(
√

2ρn − ρn)1En0+n
(i) ≥ (

√
2 − 1)

∑
n≤�

ρn1En0+n
(i) .

Squaring both sides of the inequality above, summing over all indices i ∈ [m] \
⋃

n≤� In0+n(f) and, again, 
using the fact that the sets En0+n are disjoint, it follows that

m∑
i=1

|〈f,Xi〉|2 ≥
∑

i∈[m]\
⋃

n≤� In0+n(f)

|〈f,Xi〉|2 ≥ (
√

2 − 1)2
∑
n≤�

ρ2
n|En0+n| . (4.35)

This is the desired estimate. �
Next we study the problem of bounding the difference ‖|fX|2 − πn0+�|fX|2‖1. The following lemma 

provides a key step towards Theorem 4.8.

Lemma 4.12. Let T ⊆ √
sBN

�1 and let πn0+� : T → An0+� be as defined in (4.26). Further, let n0 ≥
log2 log2(2N) + log2 log2(sK2/δ) with δ ∈ (0, 1), � = �log2(sK2/δ)�, k0 = �log2(1/δ2)�. Then, for every 
realization of X1, . . . , Xm and every f ∈ T we have

m∑
i=1

∣∣∣πn0+�|〈f,Xi〉|2 − |〈f,Xi〉|2
∣∣∣ ≤ (69 + 49

√
2) δ

m∑
i=1

|〈f,Xi〉|2 + (643 + 468
√

2) δm . (4.36)

Proof. For the approximation πn0+�|〈f, Xi〉|2 we let π̃n0(f), . . . , ̃πn0+�(f) denote the inital approximants 
in T and En0 , . . . , En0+� the corresponding sets of indices defined in (4.23). Further, let I�(fX) =
(In0(f), . . . , In0+�(f)) denote the sets associated with the approximants, defined by (4.22). Moreover, we 
define the sets

J := [m] \
⋃
n≤�

In0+n(f) and Jc =
⋃
n≤�

In0+n(f).

We split the proof into two main parts. First, we show that the contribution from the set Jc to the 
approximation error, i.e., ‖(|fX|2 − πn0+�|fX|2)|JC‖1, is bounded by 16(40 + 29

√
2) δm. Afterwards, we 

study the contributions of the set J , namely ‖(|fX|2 − πn0+�|fX|2)|J‖1.
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For the first part, recalling from (4.21) that M = 4δm/(sK2 log2(sK2/δ)), we observe that by the 
definition of weak covering and by the definition (4.22) of the sets In0+n we have |In0+n(f)| ≤ M and, 
therefore,

|Jc| ≤ (� + 1) max
n≤�

|In0+n(f)| ≤ 4δm(� + 1)
sK2 log2(sK2/δ) . (4.37)

Hence, using (4.28) we find that for each f ∈ T ⊆ √
sBN

�1 ,∑
i∈Jc

∣∣∣|〈f,Xi〉|2 − πn0+�|〈f,Xi〉|2
∣∣∣

≤
(

max
i∈[m]

|〈f,Xi〉|2 + max
i∈[m]

πn0+�|〈f,Xi〉|2
) 4m(� + 1)δ
sK2 log2(sK2/δ)

≤ 16(40 + 29
√

2) δm .

(4.38)

In (4.38) we have used that � = �log2(sK2/δ)�. Therefore, the contribution from the indices i ∈ Jc is 
bounded by 16(40 + 29

√
2) δm.

In the second part of the proof, we estimate the approximation error corresponding to the set J . We start 
by expressing the approximant πn0+�|fX|2 in an equivalent form (see (4.40) below) obtained by simplifying 
a telescoping sum. Namely, for every i ∈ J , we observe that, assuming that

1En0+n
(i)(|π∗

n,k|〈f,Xi〉|2 − π∗
n,k−1|〈f,Xi〉|2) ≤ (11 + 9

√
2) · ρnρk, (4.39)

for every k ∈ [n, n + k0] and n ∈ [0, �], then for each i ∈ [m] the telescoping sum in the definition (4.26)
satisfies

πn0+�|〈f,Xi〉|2 =
�−1∑
n=0

∑
k∈[n,n+k0]

(|〈π∗
n,k(f), Xi〉|2 − |〈π∗

n,k−1(f), Xi〉|2)

=
�−1∑
n=0

|〈π∗
n,n+k0

f,Xi〉|2 =
�−1∑
n=0

1En0+n
(i)|〈π̃n0+n+k0(f), Xi〉|2 .

(4.40)

Let us now verify the validity of (4.39). This is trivial if i /∈ En0+n. For i ∈ En0+n, it is implied by the 
following estimate: For each i ∈ J and k ∈ [n, n + k0], we have∣∣∣|〈f,Xi〉|2 − π∗

n,k|〈f,Xi〉|2
∣∣∣ =

∣∣∣|〈f,Xi〉|2 − π̃n0+k|〈f,Xi〉|2
∣∣∣1En0+n

(i) ≤ (7 + 2
√

2) ρkρn . (4.41)

Let us show the validity of (4.41) for i ∈ En0+n. Recall that for i ∈ J and k ∈ [n, n + k0] the definition of 
(4.21) implies that | |〈f, Xi〉| − |〈π̃n0+k(f), Xi〉| | ≤ ρk. Therefore, by using (4.30) and (4.31) we find,∣∣∣|〈f,Xi〉|2 − |〈π̃n0+k(f), Xi〉|2

∣∣∣1En0+n
(i)

=
∣∣∣|〈f,Xi〉| − |〈π̃n0+k(f), Xi〉|

∣∣∣ · ∣∣∣|〈f,Xi〉| + |〈π̃n0+k(f), Xi〉|
∣∣∣1En0+n

(i)

≤ ρk

∣∣∣|〈f,Xi〉| + |〈π̃n0+k(f), Xi〉|
∣∣∣1En0+n

(i)

≤ (7 + 2
√

2)ρkρn

This proves the claim (4.41). With this we observe that for each i ∈ J ∩ En0+n we have



264 S. Brugiapaglia et al. / Appl. Comput. Harmon. Anal. 53 (2021) 231–269
|π∗
n,k|〈f,Xi〉|2 − π∗

n,k−1|〈f,Xi〉|2| ≤ (11 + 9
√

2) ρnρk . (4.42)

Indeed, for k ≥ n + 1 we employ (4.41) and the triangle inequality to see that

|π∗
n,k|〈f,Xi〉|2 − π∗

n,k−1|〈f,Xi〉|2|

=
∣∣∣π∗

n,k|〈f,Xi〉|2 − |〈f,Xi〉|2 + |〈f,Xi〉|2 − π∗
n,k−1|〈f,Xi〉|2

∣∣∣
≤
∣∣∣π∗

n,k|〈f,Xi〉|2 − |〈f,Xi〉|2
∣∣∣ +

∣∣∣π∗
n,k−1|〈f,Xi〉|2 − |〈f,Xi〉|2

∣∣∣
≤ ((7 + 2

√
2)ρnρk + (7 + 2

√
2)ρnρk−1)

≤ (7 + 2
√

2)(1 +
√

2) ρnρk = (11 + 9
√

2) ρnρk .

Further, for k = n the desired estimate follows from Lemma 4.9 and for k < n we have π∗
n,k|〈f, Xi〉|2 = 0. 

This proves (4.42) and, consequently, (4.39) and, in turn, (4.40).
Taking advantage of the representation (4.40), the proof is now concluded by estimating ‖(|fX|2 −

φn0,�|fX|2)|J‖1, where we define

φn0,�|〈f,Xi〉|2 :=
�−1∑
n=0

1En0+n
(i)|〈π̃n0+n+k0(f), Xi〉|2 . (4.43)

For any i ∈ J , there are two possibilities. Either i belongs to a set En0+n for exactly one value of n = 0, . . . , �
(recall that the sets (En0+n)n≤� are disjoint), or i does not belong to any of these sets. In the first case, i.e., 
i ∈ En0+n ∩ J for some n = 0, . . . , �, the estimate (4.41) applied for k = n + k0 together with (4.31), i.e., 
(
√

2 − 1)2ρ2
n ≤ |〈f, Xi〉|2 and the fact that k0 = �log2(1/δ2)� imply that∣∣∣|〈π̃n0+n+k0(f), Xi〉|2 − |〈f,Xi〉|2

∣∣∣ ≤ (11 + 9
√

2) ρnρn+k0

≤ (11 + 9
√

2) ρ2
n2−k0/2 ≤ (69 + 49

√
2) δ|〈f,Xi〉|2.

Hence, since the sets (En0+n)n≤� are disjoint, we obtain the estimate

∑
i∈J∩

⋃
n≤� En+n0

∣∣∣|〈f,Xi〉|2 − φn0,�|〈f,Xi〉|2
∣∣∣ ≤ (69 + 49

√
2) δ

m∑
i=1

|〈f,Xi〉|2 . (4.44)

Next, let us consider the case that for all n ≤ � we have i /∈ En0+n. Under this condition, for all n ≤ � we 
have φn0,�|〈f, Xi〉|2 = 0. From the definition of En0+n and the fact that π̃n0+�(f) is associated with a weak 
covering of parameter ρ�, it follows that, for any i ∈ J ,

|〈f,Xi〉| ≤ ρ� + |〈π̃n0+�(f), Xi〉| ≤ ρ� +
√

2ρ� ≤ (1 +
√

2)ρ� ≤ (1 +
√

2)
√
δ .

Therefore, if i /∈ En for all n ≤ �, we obtain

∑
i∈J∩

⋂
n≤� E

c
n0+n

∣∣∣φn0,�|〈f,Xi〉|2 − |〈f,Xi〉|2
∣∣∣ =

∑
i∈J∩

⋂
n≤� E

c
n0+n

|〈f,Xi〉|2

≤ (1 +
√

2)2δ |J ∩
⋂
n≤�

Ec
n0+n|

√ 2

(4.45)
≤ (1 + 2) mδ .
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Finally, since [m] = (J ∩
⋃

n≤� En0+n) ∪ (J ∩
⋂

n≤� E
c
n0+n) ∪Jc is a partition of [m], combining the estimates 

(4.44), (4.45) and (4.38) we obtain,

m∑
i=1

∣∣∣πn0+�|〈f,Xi〉|2 − |〈f,Xi〉|2
∣∣∣

=
∑

i∈J∩
⋃

n≤� En0+n

∣∣∣πn0+�|〈f,Xi〉|2 − |〈f,Xi〉|2
∣∣∣

+
∑

i∈J∩
⋂

n≤� E
C
n0+n

∣∣∣πn0+�|〈f,Xi〉|2 − |〈f,Xi〉|2
∣∣∣

+
∑
i∈JC

∣∣∣πn0+�|〈f,Xi〉|2 − |〈f,Xi〉|2
∣∣∣

≤ (69 + 49
√

2) δ
∑

i∈J∩
⋃

n≤� En0+n

|〈f,Xi〉|2 + (1 +
√

2)2δm + 16(40 + 29
√

2) δm .

This estimate finishes the proof. �
Having established these results we are ready to give the proof of Theorem 4.8.

Proof of Theorem 4.8. The inequality (4.19) coincides with the claim of Lemma 4.12.
Let us verify the second claim (4.20) of Theorem 4.8. By Lemma 4.10 we have the bound

n0+�−1∑
n=n0

2n
2 ‖πn0+n+1|fX|2 − πn0+n|fX|2‖2 ≤ (40 + 29

√
2)

n0+�−1∑
n=n0

2n
2
√

|En0+n|ρ2
n

Recalling that ρn =
√
sK2−n

2 , we see that the left hand side of (4.20) is bounded by

(40 + 29
√

2)
n0+�−1∑
n=n0

2n
2
√

|En0+n|ρ2
n ≤ (40 + 29

√
2)
√
sK2

n0
2

�−1∑
n=0

√
|En0+n|ρn .

By using Cauchy-Schwarz to estimate the sum over n = 0, . . . , � − 1, it follows that this term is bounded by

(40 + 29
√

2) · 2
n0
2
√
�sK

( �−1∑
n=0

|En0+n|ρ2
n

)1/2
. (4.46)

Applying Lemma 4.11 to this estimate we obtain that (4.46) is bounded by

(200 + 140
√

2)
√
�sK2

n0
2

( m∑
i=1

|〈f,Xi〉|2
)1/2

.

Summarizing these estimates we obtain (4.20). �
The last step in this section is to establish Theorem 4.2 based on Theorem 4.8.

Proof of Theorem 4.2. Using Lemma 4.4 together with Theorem 4.8 we obtain that for T ⊆ √
sBN

�1 , δ ∈
(0, 1), n0 = �log2 log2(2N) + log2 log2(sK2/δ)� (thus, we obtain 2

n0
2 ≤

√
2
√

log2(2N) log2(sK2/δ)) and 
� = �log2(sK2/δ)� ≤ 2 log2(sK2/δ) the following bound holds:
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E sup
f∈T

∣∣∣ 1
m

m∑
i=1

|〈f,Xi〉|2εi
∣∣∣ ≤ (69 + 49

√
2) δ

m∑
i=1

|〈f,Xi〉|2 + (643 + 468
√

2) δm

+ (280 + 200
√

2)

√
sK2 log2(sK2/δ) log(eN)

m

(
E sup

f∈T

1
m

m∑
i=1

|〈f,Xi〉|2
)1/2

.

This is the desired estimate. �
4.4. Extension to Theorem 2.13

In this section we discuss the changes of the proof of Theorem 1.1 that are necessary in order to obtain 
its weighted version, Theorem 2.13. The result in Section 2.3 can be obtained by the same argument as 
presented in this section with minor modifications. For the convenience of the reader this section discusses 
the necessary changes and their impact on the argument.

As a first step let us note that the arguments stated up to the subsection 4.3 are also valid in the context 
of Theorem 2.13 and can be applied without changes after recognizing that under the assumption that 
wj ≥ ‖〈Xi, ej〉‖L∞ for all j ∈ [N ], then for each f ∈ CN with ‖f‖w,1 ≤ √

s we have

|〈f,Xj〉| ≤ ‖f‖w,1 max
j∈[N ]

w−1
j |Xj | ≤ ‖f‖w,1 ≤

√
s . (4.47)

Therefore, the main content of this subsection is to show that we can construct an admissible sequence 
(An)n≥n0 , which mimics the behavior of the sequence we constructed in Theorem 4.8. In order to do this, 
let us start by introducing some notation.

The argument that we would like to adopt is concerned with a weighted version of the �1-ball. Recall from 
(2.18) that the definition of the weighted �p-spaces gives the following definition for the weighted �1-norm. 
For a sequence of weights w ∈ [1, ∞)N we have

‖f‖w,1 =
N∑
j=1

wj |fj |. (4.48)

The unit ball of this norm is given by

BN
�1w

:= {f ∈ CN : ‖f‖w,1 ≤ 1} . (4.49)

Let us now indicate how the argument of Subsection 4.3 has to be adjusted in order to cover the set 
{(|〈f, Xi〉|2)i∈[m] : f ∈ T}, where T ⊆ √

sBN
�1w

.
The first point is to find a weak covering of 

√
sBN

�1w
in order to get the argument started.

Lemma 4.13. Let T ⊂ √
sBN

�1w
, δ ∈ (0, 1) and ρ > 0. Assume that w ∈ [1, ∞)N satisfies wj ≥ ‖〈X, ej〉‖L∞ . 

Then, for every realization of X1, . . . , Xm we have

logN ∗
(
T, ρ,

4δm
s log2(s/δ)

)
≤ 2 log2(s/δ) log2(2N)s

ρ2

Sketch of Proof. The lemma is a staightforward adaption of Lemma 4.7. First observe that every x ∈ BN
�1w

is a convex combination of V = {±wj
√
sej , ±iwj

√
sej : j ∈ [N ]}, i.e., there are coefficients λv ≥ 0 with ∑

v∈V λv = 1, such that

x =
∑

λvv .

v∈V
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By arguing as in the proof of Lemma 4.7 we can construct random variables Zl, for l = 1, . . . , L, such that 
P (Zl = v) = λv. This sequence of random variables satisfies E〈Zl, Xi〉 = 〈x, Xi〉 and for each i ∈ [m],

P
(∣∣∣ L∑

l=1

〈Zl, Xi〉 − 〈x,Xi〉
∣∣∣ ≥ ρ

)
≤ 2 exp(−Lρ2/(max

l∈[L]
|〈Xi, Zl〉|)) ≤ 2 exp(−Lρ2/s),

since |〈Xi, Zl〉| ≤ ‖Zl‖w,1 maxj∈[N ] w
−1
j |〈Xi, ej〉| ≤

√
s. The rest of the argument is identical to the argu-

ments in the proof of Lemma 4.7. �
4.4.1. Adaption of Theorem 4.8

Let us state a version of Theorem 4.8, which can be used in the weighted context. The theorem and its 
proof only contain minor changes compared to the result in Section 4.3.

Theorem 4.14. Let T ⊆ √
sBN

�1w
and let δ ∈ (0, 1). Assume that for all j ∈ [N ] we have wj ≥ ‖〈X, ej〉‖L∞ . 

Then, for n0 = �log2 log2(eN) +log2 log2(s/δ)� and � = �log2(s/δ)� there is an admissible sequence (An)n≥n0

for T such that

• For all f ∈ T we have

‖|fX|2 − πn0+�|fX|2‖1 ≤ (69 + 49
√

2)δ
m∑
i=1

|〈f,Xi〉|2 + (643 + 468
√

2)δ . (4.50)

• For all f ∈ T we have

n0+�−1∑
n=n0

2n
2 ‖πn+1|fX|2 − πn|fX|2‖2 ≤ (200 + 140

√
2) ·

√
�s2

n0
2 ‖(〈f,Xi〉)i∈[m]‖2 . (4.51)

Let us summarize the necessary changes in the argument presented in Section 4.3. As in the covering 
argument above, the following assumption is crucial for the deduction of Theorem 4.14:

for all j ∈ [N ] we have wj ≥ ‖〈X, ej〉‖L∞ . (4.52)

The remainder is organized around the principles used in Section 4.3 and only contains remarks on the 
minor changes that need to be applied in order to obtain Theorem 4.14.

As a general note in order to understand the adaptations we remark that the estimates in Section 4.3
mostly depend on the inner product |〈f, Xi〉| for elements f ∈ T ⊆ √

sBN
�1 . However, under the assumption 

(4.52) the inner product |〈f, Xi〉| satisfies the same bounds as before.
The initial admissible sequence. In oder to set up the initial admissible sequence we consider the norm 

‖f‖X := maxi∈[m] |〈f, Xi〉| and observe that for T ⊆ √
sBN

�1w
we have the estimate supf∈T ‖f‖X ≤ √

s

provided that (4.52) is satisfied. Therefore, the initial sequence is defined as in (4.21) by setting

ρn =
√
s2−n/2 and M = 4δm

s log2(s/δ)
. (4.53)

The above lemma then guarantees the existence of an admissible sequence for n = 0, · · · , � + k0. The 
necessary definitions in (4.25) and (4.27) can be adapted without changes.

�2-stability. Versions of Lemma 4.9 and Lemma 4.11 for the weighted setting can be deduced by the same 
arguments as in Subsection 4.3.
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The γ2-boundedness. A version of Lemma 4.10 can be deduced by exactly the same arguments. Further, 
the bound for the γ2 functional in the proof of Theorem 4.8 can be used up to replacing 

√
sK by supf∈T ‖f‖X.

The �1-approximation. In order to deduce a version of Lemma 4.12 we can again use the argument pre-
sented in Subsection 4.3. This is possible, since all arguments in the proof only depend on maxi∈[m] |〈f, Xi〉|2

and the differences 
∣∣∣|〈f, Xi〉| − |〈π̃n0+k(f), Xi〉|

∣∣∣1En0+n
(i). Further, by the choice of ρn, Assumption (4.52), 

it follows for f ∈ √
sBN

�1w
we have the bound ‖f‖X ≤ √

s.
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