79,499 research outputs found

    A Declarative Semantics for Logic Program Refinement

    Get PDF
    The refinement calculus provides a framework for the stepwise development of imperative programs from specifications. This paper presents a semantics for a refinement calculus for deriving logic programs. The calculus contains a wide-spectrum logic programming language, including executable constructs such as sequential conjunction, disjunction, and existential quantification, as well as specifications constructs (general predicates and assumptions) and universal quantification. A semantics is defined for this wide-spectrum language based on {\em executions}, which are partial functions from states to states, where a state is represented as a set of bindings. This execution semantics is used to define the meaning of programs and specifications, including parameters and recursion. To complete the calculus, a notion of correctness-preserving refinement over programs in the wide-spectrum language is defined and a refinement law for introducing recursive procedures is presented

    Path-Based Program Repair

    Full text link
    We propose a path-based approach to program repair for imperative programs. Our repair framework takes as input a faulty program, a logic specification that is refuted, and a hint where the fault may be located. An iterative abstraction refinement loop is then used to repair the program: in each iteration, the faulty program part is re-synthesized considering a symbolic counterexample, where the control-flow is kept concrete but the data-flow is symbolic. The appeal of the idea is two-fold: 1) the approach lazily considers candidate repairs and 2) the repairs are directly derived from the logic specification. In contrast to prior work, our approach is complete for programs with finitely many control-flow paths, i.e., the program is repaired if and only if it can be repaired at the specified fault location. Initial results for small programs indicate that the approach is useful for debugging programs in practice.Comment: In Proceedings FESCA 2015, arXiv:1503.0437

    Building an IDE for the Calculational Derivation of Imperative Programs

    Full text link
    In this paper, we describe an IDE called CAPS (Calculational Assistant for Programming from Specifications) for the interactive, calculational derivation of imperative programs. In building CAPS, our aim has been to make the IDE accessible to non-experts while retaining the overall flavor of the pen-and-paper calculational style. We discuss the overall architecture of the CAPS system, the main features of the IDE, the GUI design, and the trade-offs involved.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    Formally based semi-automatic implementation of an open security protocol

    Get PDF
    International audienceThis paper presents an experiment in which an implementation of the client side of the SSH Transport Layer Protocol (SSH-TLP) was semi-automatically derived according to a model-driven development paradigm that leverages formal methods in order to obtain high correctness assurance. The approach used in the experiment starts with the formalization of the protocol at an abstract level. This model is then formally proved to fulfill the desired secrecy and authentication properties by using the ProVerif prover. Finally, a sound Java implementation is semi-automatically derived from the verified model using an enhanced version of the Spi2Java framework. The resulting implementation correctly interoperates with third party servers, and its execution time is comparable with that of other manually developed Java SSH-TLP client implementations. This case study demonstrates that the adopted model-driven approach is viable even for a real security protocol, despite the complexity of the models needed in order to achieve an interoperable implementation

    A Refinement Calculus for Logic Programs

    Get PDF
    Existing refinement calculi provide frameworks for the stepwise development of imperative programs from specifications. This paper presents a refinement calculus for deriving logic programs. The calculus contains a wide-spectrum logic programming language, including executable constructs such as sequential conjunction, disjunction, and existential quantification, as well as specification constructs such as general predicates, assumptions and universal quantification. A declarative semantics is defined for this wide-spectrum language based on executions. Executions are partial functions from states to states, where a state is represented as a set of bindings. The semantics is used to define the meaning of programs and specifications, including parameters and recursion. To complete the calculus, a notion of correctness-preserving refinement over programs in the wide-spectrum language is defined and refinement laws for developing programs are introduced. The refinement calculus is illustrated using example derivations and prototype tool support is discussed.Comment: 36 pages, 3 figures. To be published in Theory and Practice of Logic Programming (TPLP

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm
    corecore