
SOFTWARE VERIFICATION RESEARCH CENTRE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072

Australia

TECHNICAL REPORT

No. 00-30

A Declarative Semantics for Logic
Program Refinement

Ian Hayes∗ Ray Nickson†

Paul Strooper∗ Robert Colvin∗

October 2000

Phone: +61 7 3365 1003

Fax: +61 7 3365 1533

http://svrc.it.uq.edu.au

Note: Most SVRC technical reports are available via
anonymous ftp, from svrc.it.uq.edu.au in the directory
/pub/techreports. Abstracts and compressed postscript
files are available via http://svrc.it.uq.edu.au

A Declarative Semantics for Logic Program Refinement

Ian Hayes∗ Ray Nickson† Paul Strooper∗ Robert Colvin∗

∗ School of Computer Science and Electrical Engineering, The University of Queensland,
Australia
† School of Mathematical and Computing Sciences, Victoria University of Wellington, New

Zealand

Abstract

The refinement calculus provides a framework for the stepwise development of impera-
tive programs from specifications. This paper presents a semantics for a refinement calcu-
lus for deriving logic programs. The calculus contains a wide-spectrum logic programming
language, including executable constructs such as sequential conjunction, disjunction, and
existential quantification, as well as specifications constructs (general predicates and as-
sumptions) and universal quantification. A semantics is defined for this wide-spectrum
language based on executions, which are partial functions from states to states, where a
state is represented as a set of bindings. This execution semantics is used to define the
meaning of programs and specifications, including parameters and recursion. To complete
the calculus, a notion of correctness-preserving refinement over programs in the wide-
spectrum language is defined and a refinement law for introducing recursive procedures is
presented.

1 Introduction

Our goal is to provide a method for the systematic development of logic programs from spec-
ifications. We follow a refinement calculus approach [Bac88], which provides a framework for
the stepwise development of imperative programs from specifications. It makes use of a wide-
spectrum language that includes both specification and programming language constructs. This
allows a specification to be refined, step by step, to program code within a single language.
The programs produced during the intermediate steps of this process may contain specification
constructs as components, and hence may not be code suitable for execution.

In this paper, we give a declarative semantics for a refinement calculus for logic program-
ming. The calculus contains a wide-spectrum logic programming language, including exe-
cutable conjunction, disjunction, and existential quantification, as well as specification con-
structs (general predicates and assumptions) and universal quantification, which are not in
general executable. General predicates allow non-executable properties to be included in spec-
ifications. Assumptions represent information about the context in which a program fragment
will execute. An implementation is obliged to produce the specified result only if its assump-
tions are satisfied by the context. The language also supports parametrised procedures and
recursion.

1

〈P〉 - specification
{A} - assumption

(c1 ∨ c2) - disjunction
(c1 ∧ c2) - parallel conjunction

(c1, c2) - sequential conjunction
(∃ v • c) - existential quantification
(∀ v • c) - universal quantification

id(T) - procedure call

Figure 1: Summary of wide-spectrum language

The semantics of the wide-spectrum language is defined in terms of executions, which are
partial functions from initial to final states. A state in turn is represented as a set of bindings,
where each binding is a mapping from variables to values. As is traditionally the case with
logic programs, we consider only executions where the bindings in the final state are a subset
of the bindings in the initial state. To complete the calculus, we define a notion of correctness-
preserving refinement over programs in the wide-spectrum language and a refinement law for
introducing recursive procedures.

Section 2 of this paper summarizes the wide-spectrum logic programming language. Sec-
tion 3 gives the basic definitions necessary for our formal semantics. Section 4 presents the
semantics of the base language in terms of executions. Section 5 defines our notion of refine-
ment. Section 6 gives the machinery for dealing with procedures and parameters. Section 7
introduces recursion and in Section 8 we define a refinement rule for introducing recursion and
present a small example. Section 9 concludes with a discussion of related work.

Our semantics is described using the notation of the Z specification language [Spi92], with
which the reader is assumed to be familiar. Appendix A summarises the main definitions of
the paper and illustrates our convention for naming variables. Various properties arising from
our semantics, which are required but not proved in the body of the paper, are proved in
Appendices B–F.

2 Wide-spectrum language

This section presents the wide-spectrum logic programming language [HNS97], which combines
both logic programming language and specification language constructs. It allows constructs
that may not be executable, similar to Back’s [Bac88] inclusion of specification constructs in
Dijkstra’s imperative language. This has the benefit of allowing gradual refinement without
the need for notational changes during the refinement process. The constructs in the language
are specifications, assumptions, propositional operators, quantifiers, and procedure calls. A
summary of the language is shown in Figure 1. Below we describe the constructs of the
language, and discuss the intuition behind each.

Specifications A specification 〈P〉, where P is a predicate, represents a set of instantiations
of the free variables of the program that satisfy P (we defer detailed discussion of predicates
unitl Section 3.3). For example, the specification 〈X = 5 ∨ X = 6〉 represents the set of

2

instantiations {5, 6} for X . The specification fail is defined by:

fail == 〈false〉

It always computes an empty answer set, like Prolog’s fail. Note that 〈true〉 represents the
set of all instantiations and therefore has no effect (it is like skip in the traditional refinement
calculus).

Assumptions An assumption {A}, where A is a predicate, expresses a requirement on
the context for a program fragment. For example, some programs may require that an integer
parameter be non-zero, expressed as {X 6= 0}. If assumptions about the context are formally
expressed, implementations may take advantage of the assumptions, but need not establish
(or indeed check) them. If these assumptions do not hold, the program fragment may abort.
Aborting includes program behaviour such as nontermination and abnormal termination due
to exceptions like division by zero, as well as termination with arbitrary results. We define the
(worst possible) program abort by

abort == {false}

Note that abort is quite different from the program fail, which never aborts, but has an empty
solution set. Also, {true}, like 〈true〉, has no effect, since every context satisfies it.

Propositional Operators There are two forms of conjunction: a sequential form (c1, c2)
where c1 is evaluated before c2; and a parallel version (c1 ∧ c2) where c1 and c2 are evaluated
independently and the intersection of their respective results is formed on completion. The
disjunction of two programs (c1 ∨ c2) computes the union of the results of the two programs.
We overload the symbols ‘∧’ and ‘∨’ as both operators on predicates and operators on com-
mands. Because, for example, the meanings of 〈P ∧ Q〉 and 〈P〉 ∧ 〈Q〉 are identical, this does
not usually cause confusion.

The following three programs illustrate the behaviour of sequential and parallel conjunction,
and show the difference between abortion and failure.

P1 == {X 6= 0}, 〈Y = 1/X 〉
P2 == 〈X 6= 0〉, 〈Y = 1/X 〉
P3 == 〈X 6= 0〉 ∧ 〈Y = 1/X 〉

If each of the three programs is executed from a state where X = 0, P1 is equivalent to abort,
while P2 will fail, producing an empty answer set. The behaviour of P3 is also equivalent to
abort, because the expression Y = 1/0 is not defined.

Quantifiers The existential quantifier (∃ v • c) generalises disjunction, computing the
union of the results of c for all possible values of v . Similarly, the universal quantifier (∀ v • c)
computes the intersection of the results of c for all possible values of v .

Procedures A procedure definition has the form

id == v :- c

where id is an identifier, v is a variable representing the parameter to the procedure, and c is
a wide-spectrum program (the motivation for using this somewhat non-standard notation will
become clear later). It defines the procedure called id with a formal parameter v and body c.
A call on the procedure id is of the form id(T), where T is a term: the actual parameter. No

3

generality is lost in restricting procedures to a single parameter, as multiple parameters may
be encoded using compound terms.

Commands We define Cmd to be the set of commands in our language, built up from
the constructs shown in Figure 1. Note that procedure definitions are not commands in our
language; they are dealt with in Section 6.

3 Domains

We begin our formal treatment of the semantics by defining the domains over which our
semantics of programs are given.

3.1 Variables, values, and functors

We have fixed domains of variables (Var), values (Val), and functors (Fun).

[Var ,Val ,Fun]

Elements of Var represent the variables that can occur in programs. This includes variables for
which a program’s answers give values, variables that are bound by universal and existential
quantifiers, and variables used in formal parameters. Values are the objects in the universe of
discourse, denoted by ground terms. Functors represent the function symbols in our language
that are used to construct compound terms. Each functor has an arity defined for it.

arity: Fun → N

Atoms are functors of arity zero.
If we restrict our interpretation of ground terms to the Herbrand interpretation, as is typical

in logic programming, Val is structured into atoms and compound terms. But we allow more
structure than this; Val may be structured according to any algebra, taking into account
whatever kind of term equality is appropriate for the application under consideration. For
the purposes of this paper, all we assume is that there is a function apply, which models the
application of a function to a sequence of values, resulting in a value.

apply: Fun → (seq Val 7→ Val)

∀ f : Fun • dom(apply f) ⊆ {s: seq Val | #s = arity f }

With this more general interpretation, given a functor f of arity n, ‘apply f ’ may be undefined
for some sequences of values of length n. We write def E (def P) for the predicate that is
true precisely when the expression E (predicate P) is well-defined: that is, when all function
applications occuring within it are well-defined. For the Herbrand interpretation, or indeed
for any other interpretation in which all functions are total, def E = def P = true for all
expressions E and predicates P .

3.2 Bindings

A binding is a total function, mapping every variable to a value.

Bnd == Var → Val

4

Each binding corresponds to a single ground answer to a Prolog-like query. The mechanism
for representing “unbound” variables is described below.

3.3 States and predicates

A predicate is a function from bindings to booleans.

Pred == Bnd → B

It corresponds to our usual notion of a predicate with some free variables, which is true or false
once provided with a binding for those variables. We write P to denote the set of bindings
satisfying P . For example:

false = ∅

true = Bnd
X = 3 = {b: Bnd | b X = 3}

X < Y = {b: Bnd | b X < b Y }

A state is a set of bindings.

State == PBnd

An unbound variable is represented by a possibly infinite state that has one binding to each
element of Val . For example, if we suppose that Var contains just the variables {X ,Y ,Z},
and f has arity one, the set of solutions to the equation Y = f (X) is represented by the state

{x , z : Val • {X 7→ x ,Y 7→ apply f 〈x 〉,Z 7→ z}}

which contains bindings that explicitly map the unbound variables X and Z to every pair of
values x and z , with each binding mapping Y to the value apply f 〈x 〉 (assuming apply f is
total on singleton sequences).

3.4 Terms

A term is a variable, or a functor with a (possibly empty) sequence of terms (the arguments).

Term: : = varT 〈〈Var〉〉 | funT 〈〈Fun × seq Term〉〉

For any variable v , varT (v) is a term, and if f is a functor and ts is a sequence of terms, then
funT (f , ts) is a term.

A term may have a value when evaluated relative to some binding, or it may be undefined
if the term involves the incorrect application of a function. We define a partial function eval
that evaluates a term relative to a binding.

eval: Term → (Bnd 7→ Val)

eval(varT v) = (λ b: Bnd • b v)
eval(funT (f , ts)) = {b: Bnd ; vs: seq Val |

(∀ i : dom ts • b ∈ dom(eval(ts(i)))) ∧
vs = map(λ t : Term • eval t b)(ts) ∧
vs ∈ dom(apply f)
• b 7→ apply f vs}

5

To evaluate a compound term funT (f , ts) with respect to a binding b, all of the terms in the
sequence ts must be able to be evaluated with respect to b, and the resultant sequence of values
vs must be in the domain of apply f .

For a term t , defined(t) is the set of states for which t is defined for every binding in the
state.

defined: Term → PState

defined t = {s: State | s ⊆ dom(eval t)}

For a variable v , term t , and state s, assign v t s is the same as state s, except that in each
binding within s the value of v is replaced by the value of t in that binding. In the following
definition, ‘⊕’ stands for function override.

assign: Var → Term → State 7→ State

assign v t = (λ s: defined t • {b: s • b ⊕ {v 7→ eval t b}})

For some term t , free t is the set of free variables in t :

free: Term → PVar

free(varT v) = {v}
free(funT (f , ts)) =

⋃
{t : ran ts • free t}

Similarly, for a command c, the function free c defines the set of free variables in c.

4 Program execution

4.1 Executions

We define the semantics of our language in terms of executions, which are mappings from initial
states to final states. The mapping is partial because the program is only well-defined for those
initial states that guarantee satisfaction of all the program’s assumptions.

Executions satisfy the following healthiness properties:

1. If a command is guaranteed to terminate from an initial state P whose bindings all satisfy
some predicate P , it must also guarantee to terminate from all those initial states P ′,
where P ′ ⇒ P . We thus require that any subset s ′ of a set s that is in the domain of an
execution e, is also in the domain of e.

∀ s: dom e • (∀ s ′:P s • s ′ ∈ dom e)

In addition, if a command is guaranteed to terminate from initial state P and it is also
guaranteed to terminate from initial state Q , it must terminate from an initial state
P ∨ Q . Thus, if all sets in a set of states ss are in the domain of e, then their union is
also in the domain of e.

∀ ss:P(dom e) •
⋃

ss ∈ dom e

6

As we show in Appendix B.1, these together are equivalent to the fact that the domain
of e is the powerset of the set of all bindings, b, such that {b} is in the domain of e.

dom e = P{b: Bnd | {b} ∈ dom e}

2. Because of the constraining nature of logic programs (command execution cannot decrease
“groundedness”), for any state s in the domain of an execution e, the set of bindings in
the output state e(s) must be a subset of s.

∀ s: dom e • e(s) ⊆ s

3. For a set of bindings s, the output set of bindings can be determined by considering
the effect of the execution on each singleton binding, and then forming the union of the
results.

∀ s: dom e • e(s) =
⋃
{b: s • e({b})}

We thus define:

Exec == {e: State 7→ State |
dom e = P{b: Bnd | {b} ∈ dom e} ∧ (1)
(∀ s: dom e • e(s) ⊆ s) ∧ (2)
(∀ s: dom e • e(s) =

⋃
{b: s • e({b})})} (3)

Note that property (1) implies that ∅ ∈ dom e for all executions e. Also, from property
(2), e({b}) is either {b} or {}. In Appendix B.2, we show that, provided properties (1) and (2)
hold, property (3) is equivalent to any of the following three properties.

(∀ s: dom e • e(s) = {b: s | e({b}) 6= {})} (4)
(∀ s: dom e • ∀ s ′:P s • e(s ′) = e(s) ∩ s ′) (5)
∀ ss:P(dom e) • e(

⋃
ss) =

⋃
{s: ss • e(s)} (6)

Property 4 shows that an execution e may be seen as a “filter”; given a state s, it either passes
or blocks each binding b. Property 5 shows that the result of executing a command in a subset
s ′ of some state s is consistent with executing the command in state s and restricting the
results to those in s ′. This property is similar to the property quoted by Hoare [Hoa00] and
attributed to He Jifeng, as one that characterises a pure logic program. For example, Prolog’s
‘var’ does not satisfy the property. Property 6 shows that executions distribute over union,
which is used to prove continuity of executions (see Appendix F).

4.2 Semantic function for commands

We define the semantics of the commands in our language via a function that takes a command
and returns the corresponding execution.

exec: Cmd → Exec

7

exec(〈P〉) = (λ s:P(def P) • s ∩ P)
exec({A}) = (λ s:P(def A ∧A) • s)
exec fail = exec 〈false〉 = (λ s: State • ∅)
exec abort = exec {false} = {∅ 7→ ∅}
exec(c1 ∨ c2) = exec c1 ·∪ exec c2

exec(c1 ∧ c2) = exec c1 ·∩ exec c2

exec(c1 , c2) = exec c1
o
9 exec c2

exec(∃ v • c) = exists v (exec c)
exec(∀ v • c) = forall v (exec c)

Figure 2: Execution semantics of basic commands

The semantics of the basic commands (excluding procedures, parameters and recursion) is
shown in Figure 2. In the remainder of this section, we explain the definitions. In Appendix C,
we show that all executions constructed using the definitions satisfy the healthiness properties
of executions.

In Section 6, where we discuss procedures and parameters, we extend the definition of exec
with an environment, which maps procedure identifiers to their corresponding executions. For
simplicity, we first present the semantics of the basic commands ignoring the environment.

4.3 Specifications and assumptions

A specification 〈P〉 is defined for all states s such that P is defined for all bindings in s; the
result of executing specification 〈P〉 consists of those bindings in s that satisfy P .

An assumption {A} is defined for all states s such that A is defined and A holds for all
bindings in s; the result of executing assumption {A} has no effect (the set of bindings remains
unchanged).

The definition for the special-case specification fail is the constant function that returns the
empty state, no matter what the initial state is. Hence for any command c, including abort,

exec(fail , c) = exec(fail)

because fail maps any state to the empty state.
The definition for the special-case assumption abort is the function mapping the empty

state to the empty state. Hence for any command c,

exec(abort , c) = exec(abort)

because the domain of abort contains only the empty state, which it maps to the empty
state. Note that the empty state is preserved by any command, i.e., for any command c,
exec(c)(∅) = ∅.

4.4 Propositional operators

Disjunction and parallel conjunction are defined as pointwise union and intersection of the
corresponding executions.

8

·∩ : Exec × Exec → Exec
·∪ : Exec × Exec → Exec

(e1 ·∩ e2) = (λ s: dom e1 ∩ dom e2 • (e1 s) ∩ (e2 s))
(e1 ·∪ e2) = (λ s: dom e1 ∩ dom e2 • (e1 s) ∪ (e2 s))

For a conjunction (c1 ∧ c2), if a state s is mapped to s ′ by exec c1 and s is mapped to s ′′ by
exec c2, then exec(c1 ∧ c2) maps s to s ′ ∩ s ′′. Disjunction is similar, but gives union of the
resulting states instead of intersection.

Sequential conjunction (c1 , c2), is defined as function composition of the corresponding
executions.

o
9 : Exec × Exec → Exec

(e1
o
9 e2) = (λ s: dom e1 | e1(s) ∈ dom e2 • e2(e1(s)))

If exec c1 maps state s to s ′ and exec c2 maps s ′ to s ′′, then exec(c1 , c2) maps s to s ′′. If
either s is not in the domain of exec c1 or s ′ is not in the domain of exec c2, then s is not in
the domain of exec(c1 , c2).

4.5 Quantifiers

For a variable v and a state s, we define the state unbind v s as one whose bindings match
those of s in every place except v , which is completely unconstrained.

unbind: Var → State → State

unbind v s = {b: s; x : Val • b ⊕ {v 7→ x}}

Execution of an existentially quantified command ∃ v • c from an initial state s is defined
if executing c is defined in the state s ′, which is the same as s except that v is unbound. The
resultant state after executing c consists of all those bindings b in s such that there is a value,
x , for v such that execution of c retains the binding b ⊕{v 7→ x}. We thus make the following
definition of the existential quantifier for executions.

exists: Var → Exec → Exec

exists v e = (λ s: State | unbind v s ∈ dom e
• {b: s | (∃ x : Val • e({b ⊕ {v 7→ x}}) 6= {})})

Universal quantification behaves in a similar fashion to existential quantification, except that
for forall v e to retain a binding b, execution of e must retain b ⊕ {v 7→ x} for all values x .

forall: Var → Exec → Exec

forall v e = (λ s: State | unbind v s ∈ dom e
• {b: s | (∀ x : Val • e({b ⊕ {v 7→ x}}) 6= {})})

9

5 Refinement

An execution e1 is refined by an execution e2 if and only if e2 is defined wherever e1 is and they
agree on their outputs whenever both are defined. This is the usual “definedness” order on
partial functions, as used, for example, by Manna [Man74]: it is simply defined by the subset
relation of functions viewed as sets of pairs.

v : Exec ↔ Exec

e1 v e2 ⇔ e1 ⊆ e2

For the commands Cmd in our language, we define refinement in terms of refinement for
the corresponding executions.

v : Cmd ↔ Cmd

c1 v c2 ⇔ exec c1 v exec c2

Finally, refinement equivalence (vw) is defined for Cmd and Exec as refinement in both
directions.

vw : Cmd ↔ Cmd
vw : Exec ↔ Exec

c1 vw c2 ⇔ c1 v c2 ∧ c2 v c1

e1 vw e2 ⇔ e1 v e2 ∧ e2 v e1

5.1 Lattice properties

The refinement relation forms a chain-complete meet semi-lattice over Exec.

• ‘v’ is a partial order because ‘⊆’ is a partial order on sets;

• meets exist: e1 u e2 = e1 ∩ e2;

• there is a unique bottom element, corresponding to the command abort (recall that
exec abort = {∅ 7→ ∅}).

Note that joins do not exist in general, because e1 ∪ e2 may not be a function; and there is
no top element. For e1 t e2 to be defined, we require that e1 ∪ e2 is a function and not simply
a relation (i.e., e1 returns the same state as e2 for the states where both are defined). Even
under that condition, the result is not simply e1 ∪ e2, because that could violate condition (1)
of executions. Instead, we define e1te2 by adding to e1∪e2 mappings for all states that consist
of bindings for which either e1 or e2 is defined.

u : Exec × Exec → Exec
t : Exec × Exec 7→ Exec

e1 u e2 = e1 ∩ e2

(e1, e2) ∈ dom(t)⇔
(∀ s: dom e1 ∩ dom e2 • e1(s) = e2(s))

(e1, e2) ∈ dom(t)⇒
e1 t e2 = (λ s:P(

⋃
(dom e1 ∪ dom e2)) • {b: s | (e1 ∪ e2)({b}) 6= {}})

10

In Appendix D, we show that u and t (when the latter is well-defined) preserve the healthiness
properties for executions.

If e1 v e2 then their join e1 t e2 is defined (and is e2). As a result, we can define joins for
chains. We first define a chain of executions:

Chain == {ec:N→ Exec | (∀ i :N • ec(i) v ec(i + 1))}

Note that we define every chain as an infinite sequence; a finite chain is simply modelled as
an infinite chain in which the last element is repeated infinitely often. If ec is a chain, then
ec(i)t ec(i + 1) exists for all i and is equal to ec(i + 1). We therefore define the join of a chain
as follows.⊔

: Chain → Exec⊔
ec =

⋃
(ran ec)

6 Procedures and parameters

To simplify the semantics, we treat procedures, parameters and recursion as separate, though
related, concerns (cf. [Mor88]).

6.1 Environments

To handle procedure definitions (parameterless, for now), we introduce a given set of procedure
identifiers (PIdent) and an environment, which maps procedure identifiers to their correspond-
ing procedure executions.

[PIdent]
Env == PIdent 7→ Exec

Hence we change the definition of exec to add an environment parameter.

exec: Env → Cmd → Exec

The definitions we have given in Section 4 do not depend directly on the environment. The
only change required is to add the environment parameter to the calls on exec for subcompo-
nents, e.g., for an environment ρ:

exec (ρ) (S ∧ T) = exec ρ S ·∩ exec ρ T

6.2 Parametrised commands

To deal with parameters, we introduce the notion of a parametrised command. Given a vari-
able v and a command c, the expression v :- c denotes the parametrised command (PCmd)
that, when provided a term argument t , behaves like c[t/v]. Non-variable arguments may be
encoded using existential quantification and an equality conjunct in the body; multiple argu-
ments may be encoded as a single argument. For example, the Prolog procedure p defined by
‘p(Y,a(Z)) :- E’ may be encoded as

p == X :- ∃Y ,Z • 〈X = pair(Y , a(Z))〉 , E

11

where X is a fresh variable, and the functor pair just constructs the ordered pair of its ar-
guments. Parametrised commands must not have any free variables; in order for v :- c to be
well-formed, we require that c has no free variables other than v , i.e., free(c) ⊆ {v} (any other
variables in c must be explicitly quantified).

6.3 Parametrised executions

The semantics of parametrised commands will be given by parametrised executions, which are
simply functions mapping actual parameter terms to executions.

PExec == Term → Exec

We can now deal with parameterised procedures. The only change needed is that the environ-
ment maps a procedure identifier to a parametrised execution:

Env == PIdent 7→ PExec

Just as we defined exec c to give the meaning of a command c, we will now define pexec p
to give the meaning of a parametrised command p, taking into account the environment as
well as the formal parameter.

For an actual parameter term t , the execution of a parametrised command v :-c is a function
that is defined for all states s for which evaluation of t is defined for all bindings in s, and for
which c is defined when v is bound to the value of t for each binding in s. We determine the
result of executing the parametrised command by determining its result for each binding b in
s. If there is a binding b′ in the result of executing the parametrised command on binding b
with v updated with the corresponding value of the term t , then b is in the resultant state.
Recall that the result of executing a command on a singleton set is either that singleton set or
the empty set.

pexec: Env → PCmd → PExec

pexec (ρ) (v :- c) = (λ t : Term •
(λ s: defined t | assign v t s ∈ dom(exec ρ c) •
{b: s | (exec ρ c)(assign v t {b}) 6= {}}))

This definition only applies to non-recursive procedures. The definition of pexec for recursive
procedures is presented in Section 7.

6.4 Refinement

We define refinement between parametrised executions p1 and p2 by requiring refinement
for every possible value of the parameter. We also define refinement equivalence between
parametrised executions in the obvious way.

v : PExec ↔ PExec
vw : PExec ↔ PExec

(p1 v p2)⇔ (∀ t : Term • (p1 t) v (p2 t))
(p1 vw p2)⇔ (∀ t : Term • (p1 t) vw (p2 t))

12

Refinement between parametrised commands pc1 and pc2 is defined, as expected, in terms
of refinement between the corresponding parametrised executions. Strictly speaking, the re-
finement should itself be parametrised by the environment. For simplicity, in the definitions
below, we assume a fixed environment ρ.

v : PCmd ↔ PCmd
vw : PCmd ↔ PCmd

(pc1 v pc2)⇔ pexec ρ pc1 v pexec ρ pc2

(pc1 vw pc2)⇔ pexec ρ pc1 vw pexec ρ pc2

6.5 Procedure call

A parametrised command may be directly applied to a term; the result is a command, the
semantics of which is defined as follows.

exec ρ ((v :- c)(t)) = pexec ρ (v :- c) t

The syntax of a procedure call is id(t), where t is a term and id is a procedure identifier. The
parametrised command which is the definition of id in the environment is applied to t . If id is
not defined in the environment, the result of a call on id is abort.

exec ρ id(t) = if id ∈ dom ρ then (ρ id t) else (exec ρ abort)

6.6 Lattice properties

The lattice properties of Exec can be lifted to PExec.

·u : PExec × PExec → PExec
·t : PExec × PExec 7→ PExec

p1 ·u p2 = (λ t : Term • p1 t u p2 t)
(p1, p2) ∈ dom(·t)⇔ (∀ t : Term • (p1 t , p2 t) ∈ dom(t))
(p1, p2) ∈ dom(·t)⇒ p1 ·t p2 = (λ t : Term • p1 t t p2 t)

PChain == {p:N→ PExec | (∀ i :N • p(i) v p(i + 1))}

·
⊔

: PChain → PExec

·
⊔

p = (λ t : Term •
⊔

(λ i :N • p i t))

7 Recursion

If id is an identifier and p is a parametrised command, possibly containing instances of id ,
the recursion block re id • p er is also a parametrised command. Intuitively, a call on the
parametric recursion block re id • v :- . . . id(t) . . . er is similar to a call on the Prolog procedure
defined by id(V) :- ... id(T)

13

7.1 Semantics of recursion blocks

A recursion block embeds one or more recursive calls on the block inside a context. Thus,
a context is a function from one parametrised command (the recursive call) to another (the
entire body of the recursion block):

Ctx == PExec → PExec

Intuitively, to represent v :- Con[P(t)], we define the context C: Ctx such that C(P) =
v :- Con[P(t)]. In this example, C embeds a call on P in the context given by Con, and also
provides P with the parameter t . Formally, we define a function that extracts a context from
a recursion block.

context: Env → PCmd 7→ Ctx

context(ρ)(re id • pc er) = (λ p: PExec • pexec(ρ⊕ {id 7→ p})(pc))

This function is partial because it is only defined for PCmds that are recursion blocks.
To define the semantics of recursion blocks we use a fix-point construction, which is defined

for all monotonic contexts (see Knaster-Tarski Theorem [Nel89]). We first define the set of
monotonic contexts.

MCtx == {C: Ctx | (∀ p, p′: PExec • (p v p′)⇒ (C(p) v C(p′)))}

This monotonicity property holds for every context C that can be constructed in our language
(see Appendix E).

The least fix-point of a context C is given by fix C, where

fix: MCtx → PExec

(∀ C: MCtx • fix C vw C(fix C))
(∀ C: MCtx ; p: PExec • (C(p) vw p)⇒ (fix C v p))

Hence the meaning of a recursion block is the least fix-point of the context corresponding
to the recursion block.

pexec (ρ) (re id • pc er) = fix (context (ρ) (re id • pc er))

7.2 Constructing the fix-point

To simplify this and the next section, we use the syntax of parametrised commands to stand for
their PExecs and we assume a fixed environment ρ, which is augmented with a single recursive
definition.

The least defined command is abort. The least defined parametrised command is a
parametrised command with abort as its body:

abort1 == v :- abort

For a recursion based on a monotonic context C, we construct the sequence of programs:

14

pc: PChain

pc = (λ i :N • Ci(abort1))

That is, we have

pc(0) = C0(abort1) = abort1

pc(i + 1) = Ci+1(abort1) = C(pc(i))

The sequence pc forms a chain ordered by v and has a join (·
⊔

pc). By the Limit Theo-
rem [Nel89], ·

⊔
pc = fix C, as long as C is a chain-continuous function:

For a chain pc for which the join ·
⊔

pc exists, a function C is chain-continuous
provided C(·

⊔
pc) = ·

⊔
(λ i :N • C(pc(i))).

All the contexts C that can be constructed in our language are chain-continuous (see Ap-
pendix F).

7.3 Example

Consider the recursive, parametric program defined by

nats == (re n • X :- 〈X = 0〉 ∨ (∃Y • 〈X = s(Y)〉) , n(Y) er).

We call the monotonic context N , which in this case is

N = (λn: PExec • X :- 〈X = 0〉 ∨ (∃Y • 〈X = s(Y)〉) , n(Y))

The meaning of nats is given by the join of the chain nc = (λ i :N • N i(abort1)), in which:

nc(0) = N 0(abort1)
= abort1

nc(1) = N 1(abort1)
= X :- 〈X = 0〉 ∨ (∃Y • 〈X = s(Y)〉 , abort)

nc(2) = N 2(abort1)
= X :- 〈X = 0〉 ∨ (∃Y • 〈X = s(Y)〉 ,

(〈Y = 0〉 ∨ (∃Z • 〈Y = s(Z)〉 , abort)))
= X :- 〈X = 0〉 ∨ 〈X = s(0)〉 ∨ (∃Y • 〈X = s(s(Y))〉 , abort)
...

pexec nats = fixN
= ·

⊔
nc

= X :- 〈∃ i ∈ N • X = s i(0)〉 ∨ (∃Y • 〈X = sω(Y)〉 , abort)

The term sω(Y) is an abuse of notation, because our definition of terms in Section 3.4 does
not permit such infinitary terms.

15

To interpret the meaning of exec nats(X), we must consider the set of values Val in our
domain of discourse. If we only allow finitely representable values in our domain of discourse,
as with standard Herbrand interpretations, then

exec nats(X) = (λ s: State • {b: s | b X ∈ {0, s(0), . . .}})

This execution can lead to an infinite set of bindings for X .
To define the set of finitely representable values FRVal , we first consider any set V that

satisfies the fix-point equation

V = {f : Fun; s: seq V | s ∈ dom(apply f) • apply f s}

Such a set V includes the set of all finitely representable values that can be constructed from
the set of atoms and applications of function symbols. However, each set V may also contain
other values. The set of finitely representable values (FRVal) is then the least fix-point of this
equation.

FRVal ==
⋂
{V :PVal |

V = {f : Fun; s: seq V | s ∈ dom(apply f) • apply f s}}

If, on the other hand, we also allow infinitary terms (e.g., by allowing rational trees [Col82],
or by taking the standard interpretation of 0 as the number 0 and s as the successor function,
with sω(0) representing infinity), then

exec nats(X) = (λ s: State
| ¬ (∃ b: s; Y : Term • b X = sω(Y))
• {b: s | b X ∈ {0, s(0), . . .}})

If we take this interpretation and allow sω(0) in the universe, then for a state s with X unbound
there is a b ∈ s such that b X = sω(Y), and hence s is not in the domain of nats.

In this paper we do not explicitly handle the definition of a set of mutually recursive
procedure. Such a set can always be encoded as a single procedure and hence given a semantics
via this encoding. For example, a set of mutually recursive procedures

p1 == V1 :- C1

...
pn == Vn :- Cn

may be encoded as a single procedure

p == (I ,V1, . . . ,Vn) :-
〈I = 1〉,C1 ∨
...
〈I = n〉,Cn

where the parameter I encodes which of the original procedures is being called and the param-
eter names V1, . . . ,Vn are assumed to be distinct. A call of the form p1(t) is then encoded as
p(1, t , , . . . ,).

16

8 Recursion introduction

8.1 Refinement law

Suppose pc: PCmd is a parametrised command; (≺): Term ↔ Term is a well-founded
relation; and id is a fresh name. The following law can be used to introduce a recursion block
into a refinement.

pc vw (re id • v :- {∀ y : Term • y ≺ v ⇒ pc(y) v id(y)} , pc(v) er)

Proof

The theorem of well-founded induction states that, for some property Φ of terms, and well-
founded order (≺) defined on those terms:

∀ x : Term • (∀ y : Term • y ≺ x ⇒ Φ(y))⇒ Φ(x)
∀ x : Term • Φ(x)

(WFI)

Allow A(v) to abbreviate {∀ y : Term • y ≺ v ⇒ pc(y) v id(y)}. We want to prove

pc(x) vw (re id • v :- A(v) , pc(v) er)(x) (7)

for all terms x . Take Φ(x) in (WFI) to be this property. The inductive hypothesis allows us
to assume that

∀ y : Term • y ≺ x ⇒
pc(y) vw (re id • v :- A(v) , pc(v) er)(y)

Starting with the right-hand side of (7) and expanding the definition of A(v):

(re id • v :- {∀ y : Term • y ≺ v ⇒ pc(y) v id(y)} , pc(v) er)(x)
vw unroll recursion: fix C vw C (fix C)

(v :- {∀ y : Term • y ≺ v ⇒
pc(y) v (re id • v :- A(v), pc(v) er)(y)} , pc(v))(x)

vw parameter application
{∀ y : Term • y ≺ x ⇒ pc(y) v (re id • v :- A(v) , pc(v) er)(y)}, pc(x)
vw inductive hypothesis; eliminate true assumption

pc(x)

8.2 Example

To demonstrate the refinement law, we derive a recursive implementation of a factorial function
from the definition of factorial, which is:

0! = 1
(n + 1)! = n!× (n + 1), for n ≥ 0

The derivation is written using the structured calculational proof term-rewriting style
of [BGvW98], in which a mark xthusy indicates a subterm to be rewritten at a higher level of
indentation.

Our program can assume U ∈ N and must establish V = U !:

17

1 • (U ,V) :- {U ∈ N} , 〈V = U !〉
vw introduce recursion: < is well-founded on N

re f • (U ,V) :-
{∀U ′,V ′ • U ′ < U ⇒ {U ′ ∈ N} , 〈V ′ = U ′!〉 v f (U ′,V ′)},
{U ∈ N},
x〈V = U !〉y

er

Now the refinement continues, but the assumptions prior to the specification may be as-
sumed in the context of refining the specification [CHNS97]:

Assumption 1: ∀U ′,V ′ • U ′ < U ⇒ {U ′ ∈ N} , 〈V ′ = U ′!〉 v f (U ′,V ′)
Assumption 2: U ∈ N
2 • 〈V = U !〉
v [case analysis, using Assumption 2 (U ∈ N)]
〈U = 0 ∨ U > 0〉 , 〈V = U !〉

v [distributive laws, definition of factorial]
(〈U = 0〉 , 〈V = 1〉) ∨ (〈U > 0〉 , x〈V = U !〉y)

Again, we obtain an contextual assumption, this time from the specification 〈U > 0〉
immediately prior to the specification we are refining:

Assumption 3: U > 0
3 • 〈V = U !〉
v [integers, assumptions 2 and 3, definition of factorial]
〈∃U ′,V ′ • U = U ′ + 1 ∧ V ′ = U ′! ∧ V = V ′ ×U 〉

v [distributive laws]
∃U ′,V ′ • 〈U = U ′ + 1〉 , 〈V ′ = U ′!〉 , 〈V = V ′ ×U 〉

v [assumption after spec: U ∈ N ∧ U > 0 ∧ U = U ′ + 1⇒ U ′ ∈ N]
∃U ′,V ′ • 〈U = U ′ + 1〉 , x{U ′ ∈ N} , 〈V ′ = U ′!〉y , 〈V = V ′ ×U 〉
Assumption 4: U = U ′ + 1
4 • {U ′ ∈ N} , 〈V ′ = U ′!〉
v [assumption 1: U ′ < U by assumptions 2, 3, 4]

f (U ′,V ′)

Putting it all back together and removing assumptions, we get:

v re f • (U ,V):-
〈U = 0〉 , 〈V = 1〉 ∨
〈U > 0〉 , (∃U ′,V ′ • 〈U = U ′ + 1〉 , f (U ′,V ′) , 〈V = V ′ ×U 〉)

er

To translate this (informally) into Prolog, we:

• turn the recursion block into an implicitly recursive procedure;

• implement the arithmetic specifications using is;

• express the disjunction using separate clauses;

18

• make the existential quantification implicit.

The result is:

f(U,V) :- U=0, V=1.
f(U,V) :- U>0, U1 is U-1, f(U1,V1), V is V1*U.

9 Conclusions

We have presented a refinement calculus for logic programming. The calculus contains a wide-
spectrum logic programming language, including both specification and executable constructs.
We defined a declarative semantics for this wide-spectrum language based on executions, which
are partial functions from states to states. This definition is similar to the definition of predicate
transformers used in some imperative refinement, e.g., [BvW98]. As well as specifications and
program composition constructs, the semantics defines the meaning of procedures, parameters,
and recursion. Finally, there is a formal notion of refinement over programs in the wide-
spectrum language, and a refinement law for recursive procedures.

In earlier work [HNS97], we defined the meaning of a command c in the wide-spectrum
language by a pair of predicates: ok .c is a predicate defining the initial condition under which
execution of the command is well-defined (essentially representing the assumptions the com-
mand makes about its context), while ef .c is the effect of the command, provided that its
assumptions are satisfied. The two semantics are closely related in that, for every command c,

ok .c =
⋃

dom(exec c)
ok .c ∧ ef .c = (exec c)(ok .c)

However, the earlier paper lacked a rigorous treatment of procedures, parameters, and recur-
sion, and the semantics we use here is chosen to facilitate the presentation of those concepts.

A tool has been developed to support the logic programming refinement calculus [CHNS97].
However, this tool is based around the semantics presented in [HNS97]. We are currently
working on tool support for the refinement calculus based on the new semantics.

Our goal of systematically developing logic programs from specifications also underlies the
work of Deville [Dev90]. However, the main difference is that Deville’s approach to program
development is mostly informal, whereas our approach is fully formal. A second distinction is
that Deville’s approach concentrates on the development of individual procedures. By using a
wide-spectrum language, our approach blurs the distinction between a logic description and a
logic program. For example, general predicates may appear anywhere within a program, and
the refinement rules allow them to be transformed within that context. Similarly, programming
language constructs may be used and transformed at any point.

The motivation for the work by Hoare [Hoa00] is to come up with unifying theories for
logic programming, which is quite different from the motivation for our work. However, the
language constructs he considers and the semantics he uses are both very similar to the ones
we use.

19

References

[Bac88] R. J. R. Back. A calculus of refinements for program derivations. Acta Informatica,
25:593–624, 1988.

[BGvW98] Ralph Back, Jim Grundy, and Joakin von Wright. Structured calculational proof.
Formal Aspects of Computing, 9:469–483, 1998.

[BvW98] R. J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, 1998.

[CHNS97] Robert Colvin, Ian Hayes, Ray Nickson, and Paul Strooper. A tool for logic program
refinement. In D. Duke and A. Evans, editors, 2nd BCS-FACS Northern Formal
Methods Workshop, Electronic Workshops in Computing. Springer Verlag, 1997.
Also available as Technical Report UQ-SVRC-97-32, Software Verification Research
Centre, University of Queensland.

[Col82] A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S. A. Tarnlund,
editors, Logic Programming, pages 231–251. Academic Press, 1982.

[Dev90] Yves Deville. Logic Programming: Systematic Program Development. Addison-
Wesley, 1990.

[HNS97] Ian Hayes, Ray Nickson, and Paul Strooper. Refining specifications to logic pro-
grams. In J. Gallagher, editor, Logic Program Synthesis and Transformation. Pro-
ceedings of the 6th International Workshop, LOPSTR’96, Stockholm, Sweden, Au-
gust 1996, volume 1207 of Lecture Notes in Computer Science, pages 1–19. Springer
Verlag, 1997. Also available as Technical Report UQ-SVRC-96-34, Software Veri-
fication Research Centre, University of Queensland.

[Hoa00] Tony Hoare. Unifying theories for logic programming. In John Lloyd, editor,
Australian Workshop on Computational Logic, pages 31–56, February 2000.

[Man74] Zohar Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

[Mor88] Carroll Morgan. Procedures, parameters and abstraction: Separate concerns. Sci-
ence of Computer Programming, 11:17–27, 1988.

[Nel89] Greg Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Pro-
gramming Languages and Systems, 11(4):517–561, October 1989.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual (second edition). Prentice Hall
International, 1992.

A Summary of notation

The following table summarises the important types defined in this paper. We give the base-
type definitions of the types here (ignoring restrictions), and the names used (possibly deco-
rated) for values in those types.

The final column gives the section where the full definition may be found.

20

Type Base type Typical value Section
Cmd given c 2
Var given u, v ,X ,Y ,Z 3.1
Val given x , y 3.1
Fun given f 3.1
Bnd Var → Val b 3.2
State PBnd s 3.3
Term varT 〈〈Var〉〉 | funT 〈〈Fun × seq Term〉〉 t 3.4
Exec State 7→ State e 4.1
Chain N→ Exec ec 5.1
PIdent given id 6.1
PCmd given pc 6.2
PExec Term → Exec p 6.3
Env PIdent 7→ PExec ρ 6.3
PChain N→ PExec pc 6.6
Ctx PExec → PExec C 7.1
MCtx PExec → PExec C 7.1
FRVal PVal − 7.3

The following table gives the signatures of the important functions defined in the paper,
and a reference to the section where the full definition may be found.

21

Function Signature Section
arity Fun → N 3.1
apply Fun → (seq Val 7→ Val) 3.1
eval Term → (Bnd 7→ Val) 3.4
defined Term → PState 3.4
assign Var → Term → State 7→ State 3.4
free Term → PVar 3.4
free Cmd → PVar 3.4
exec Cmd → Exec 4.2
·∩, ·∪, o

9 Exec × Exec → Exec 4.4
unbind Var → State → State 4.5
exists, forall Var → Exec → Exec 4.5
v,vw Exec ↔ Exec 5
v,vw Cmd ↔ Cmd 5
u Exec × Exec → Exec 5.1
t Exec × Exec 7→ Exec 5.1⊔

Chain → Exec 5.1
exec Env → Cmd → Exec 6.1
pexec Env → PCmd → PExec 6.3, 7.1
v,vw PExec ↔ PExec 6.4
v,vw PCmd ↔ PCmd 6.4
·u PExec × PExec → PExec 6.6
·t PExec × PExec 7→ PExec 6.6
·
⊔

PChain → PExec 6.6
context Env → PCmd 7→ Ctx 7.1
fix MCtx → PExec 7.1

B Definition of Exec

In this appendix we investigate equivalent forms of the definition of Exec. Some of the equiv-
alent forms are used to simplify later proofs. In Section 4.1, we define the set of executions as
follows.

Definition B.1 Program executions

Exec == {e: State 7→ State |
dom e = P{b: Bnd | {b} ∈ dom e} ∧ (8)
(∀ s: dom e • e(s) ⊆ s) ∧ (9)
(∀ s: dom e • e(s) =

⋃
{b: s • e({b})})} (10)

Exec properties (8) and (9) tell us that:

(∀ e: Exec • {} ∈ dom e ∧ e({}) = {}) (11)

Applying property (9) to singleton bindings gives us:

(∀ b: Bnd • {b} ∈ dom e ⇒ (e({b}) = {} ∨ e({b}) = {b}) (12)

We also note the equivalence e({b}) 6= {} ⇔ e({b}) = {b}.

22

B.1 Equivalent forms of Exec property (8)

Exec property (8) can be restated as any of:

(∀ s: dom e • (∀ s ′:P s • s ′ ∈ dom e)) ∧ (∀ ss:P(dom e) •
⋃

ss ∈ dom e) (13)
dom e = P(

⋃
dom e) (14)

To prove the equivalence we make use of the following lemmas.

Lemma B.2 For all s in State: Exp and all properties P of bindings:

s ∈ P{b: Bnd | P(b)} ⇔ (∀ b: s • P(b))

Proof:

s ∈ P{b: Bnd | P(b)}
⇔ membership in power set

s ⊆ {b: Bnd | P(b)}
⇔ rewrite

(∀ b: s • b ∈ {b: Bnd | P(b)})
⇔ simplification

(∀ b: s • P(b)) 2

Lemma B.3 For all s in State: Exp and e in Exec:

s ∈ dom e ⇔ (∀ b: s • {b} ∈ dom e)

Proof:

s ∈ dom e
⇔ Exec property (8)

s ∈ P{b: Bnd | {b} ∈ dom e}
⇔ Lemma B.2

(∀ b: s • {b} ∈ dom e) 2

Theorem B.4 Equations (8) and (13) are equivalent.
Proof of (8)⇒ (13): We prove that both conjuncts of (13) simplify to true.
Simplifying the first conjunct of (13):

(∀ s: dom e • (∀ s ′:P s • s ′ ∈ dom e))
⇔ restate

(∀ s, s ′: State • s ∈ dom e ⇒ (s ′ ⊆ s ⇒ s ′ ∈ dom e))
⇔ Lemma B.3

(∀ s, s ′: State • (∀ b: s • {b} ∈ dom e)⇒ (s ′ ⊆ s ⇒ (∀ b: s ′ • {b} ∈ dom e)))
⇐ definition of subset

Simplifying the second conjunct of (13):

23

(∀ ss:P(dom e) •
⋃

ss ∈ dom e)
⇔ restate, Lemma B.3

(∀ ss:PState • ss ∈ P(dom e)⇒ (∀ b:
⋃

ss • {b} ∈ dom e))
⇔ definition of P

(∀ ss:PState • ss ⊆ dom e ⇒ (∀ b:
⋃

ss • {b} ∈ dom e))
⇔ definition of subset

(∀ ss:PState • (∀ s: ss • s ∈ dom e)⇒ (∀ b:
⋃

ss • {b} ∈ dom e))
⇔ Lemma B.3

(∀ ss:PState • (∀ s: ss • (∀ b: s • {b} ∈ dom e))⇒ (∀ b:
⋃

ss • {b} ∈ dom e))
⇐ definition of

⋃
Proof of (13)⇒ (8):
We rewrite (8) using Lemma B.2:

(∀ s: State • s ∈ dom e ⇔ s ∈ P{b: Bnd | {b} ∈ dom e})
⇔ from Lemma B.2

(∀ s: State • s ∈ dom e ⇔ (∀ b: s • {b} ∈ dom e))

We split the equivalence into two implications, and prove that (13) implies each. Going left
to right is trivial since the first conjunct of (13) implies

(∀ s: dom e • (∀ b: s • {b} ∈ dom e))

Now from the right hand side of the equivalence we know that {b: s • {b}} ∈ P(dom e).
Therefore from the second conjunct of (13) we know that⋃

{b: s • {b}} ∈ dom e

Since
⋃
{b: s • {b}} = s, it follows that s ∈ dom e. 2

Theorem B.5 Equations (8) and (14) are equivalent.
Proof of (14)⇒ (8):

dom e
= from (14)
P(
⋃

dom e)
= rewrite as comprehension
P{b: Bnd | b ∈ (

⋃
dom e)}

= membership in union
P{b: Bnd | {b} ∈ P(

⋃
dom e)}

= from (14)
P{b: Bnd | {b} ∈ dom e} 2

Proof of (8)⇒ (14):
Before progressing we note the following property for all sets ss:⋃

(P ss) = ss (15)

Proof:

24

dom e
= from (8)
P{b: Bnd | {b} ∈ dom e}

= from (15)
P(
⋃

(P{b: Bnd | {b} ∈ dom e}))
= from (8)
P(
⋃

dom e) 2

B.2 Equivalent forms of Exec property (10)

Exec property (10) can be restated as any of:

(∀ s: dom e • e(s) = {b: s | e({b}) 6= {}}) (16)
(∀ s: dom e • (∀ s ′:P s • e(s ′) = e(s) ∩ s ′)) (17)
(∀ ss:P(dom e) • e(

⋃
ss) =

⋃
{s: ss • e(s)} (18)

We show (10)⇔ (16)⇔ (17)⇔ (18), given that Exec property (9) holds.

Theorem B.6 Exec property (9) implies the equivalence of (10) and (16).
Proof:

c ∈
⋃
{b: s • e({b})}

⇔ membership in union
(∃ b: s • c ∈ e({b}))

⇔ from Exec property (9)
(∃ b: s • c = b ∧ e({b}) 6= {})

⇔ one-point rule
c ∈ s ∧ e({c}) 6= {}

⇔ rewrite
c ∈ {b: s | e({b}) 6= {}} 2

Now we will use (16) interchangeably with the original definition of Exec property (10) in
the following proofs.

Theorem B.7 Exec property (9) implies the equivalence of (16) and (17).
Proof of (16)⇒ (17), for s ∈ dom e and s ′ ∈ P s:

e(s) ∩ s ′

= from (16)
{b: s | e({b}) 6= {}} ∩ s ′

= from s ′ ∈ P s
{b: s ′ | e({b}) 6= {}}

= from (16)
e(s ′) 2

Proof of (17)⇒ (16):
Note that, from Exec property (9), we know (17) implies

(∀ b: s • e({b}) = e(s) ∩ {b}) (19)

Assume s ∈ dom e:

25

{b: s | e({b}) 6= {}}
= from (19)
{b: s | e(s) ∩ {b} 6= {}}

= simplify
{b: s | b ∈ e(s)}

= from Exec property (9)
e(s) 2

Theorem B.8 Equations (10) and (18) are equivalent.
Proof of (18)⇒ (10):
This is trivial taking ss to be singleton bindings in s. 2

Proof of (10)⇒ (18), for ss ∈ dom e:

e(
⋃

ss)
= Exec property (10)⋃
{b:
⋃

ss • e({b})}
= expand union⋃
{s: ss •

⋃
{b: s • e({b})}}

= Exec property (10)⋃
{s: ss • e(s)} 2

C Properties of Execs

In this section we prove that each of our basic commands satisfy the three conditions in
Definition B.1. We use the following definitions, with (exec c1) = e and (exec c2) = f :

exec(〈P〉) = (λ s:P(def P) • s ∩ P)
exec({A}) = (λ s:P(def A ∧A) • s)
exec(c1 ∨ c2) = e ·∪ f
exec(c1 ∧ c2) = e ·∩ f
exec(c1 , c2) = e o

9 f
exec (∃ v • c) = (λ s: State | unbind v s ∈ dom e

• {b: s | (∃ x : Val • e({b ⊕ {v 7→ x}}) 6= {})})
exec (∀ v • c) = (λ s: State | unbind v s ∈ dom e

• {b: s | (∀ x : Val • e({b ⊕ {v 7→ x}}) 6= {})})

We also prove the three properties for non-recursive parameterised commands, though to
simplify the presentation we include a new definition call. It is similar to the definition of exec
for procedure calls, except with an Exec as a parameter rather than a Cmd . The Exec of a
procedure call is given by (pexec(v :-c))(t)); in our proofs we instead use call v (exec c) t where

call v e t = (λ s:P(dom(eval t)) | assign v t s ∈ dom e
• {b: s | e(assign v t {b}) 6= {}})

We do this so that we do not have to reference the environment, and avoid the step to PExecs.
The definition of call may be likened to the definition of exists and forall.

26

In order to prove the three Exec properties we would prove each of them simultaneously for
each construct; for presentation purposes we have chosen to separate the proofs for each Exec
property. Hence in the proofs our inductive hypothesis is that all properties of Execs hold for
the components.

C.1 Proof of Exec domain property for all constructs

For each construct we prove:

dom e = P{b: Bnd | {b} ∈ dom e}

Theorem C.1 Specifications and assumptions satisfy Exec property (8).
Proof for specifications, using (14) instead of Exec property (8) (dom e = P(

⋃
dom e)):

P

⋃
(dom(exec〈P〉))

= definition
P

⋃
(P def .P)

= from (15)
P def P

= definition
dom(exec〈P〉) 2

The proof for assumptions is similar.
We require the following lemma:

Lemma C.2

(∀A,B : State • P(A ∩ B) = (PA) ∩ (PB))

Proof:

s ∈ P(A ∩ B)
⇔ membership in power set

s ⊆ (A ∩ B)
⇔ distribute subset

s ⊆ A ∧ s ⊆ B
⇔ membership in power set

(s ∈ PA) ∧ (s ∈ PB) 2

Theorem C.3 Parallel conjunction and disjunction satisfy Exec property (8) .
Proof for parallel conjunction:

P{b: Bnd | {b} ∈ dom(e ·∩ f)}
= definition
P{b: Bnd | {b} ∈ (dom e ∩ dom f)}

= distribution
P{b: Bnd | {b} ∈ dom e ∧ {b} ∈ dom f)}

= split into two comprehensions
P({b: Bnd | {b} ∈ dom e} ∩ {b: Bnd | {b} ∈ dom f })

27

= Lemma C.2
P({b: Bnd | {b} ∈ dom e}) ∩ P({b: Bnd | {b} ∈ dom f })

= inductive hypothesis
dom e ∩ dom f

= definition
dom(e ·∩ f)

Proof for disjunction: Both parallel conjunction and disjunction have the same domains,
hence the above proof holds for disjunction as well. 2

We require the following lemma

Lemma C.4 For all s in dom e:

(∀ b: s • e({b}) ∈ dom f)⇔ (∀ b: e(s) • {b} ∈ dom f)

Proof:

(∀ b: s • e({b}) ∈ dom f)
⇔ case analysis from (12)

(∀ b: s • (b ∈ e(s) ∨ b 6∈ e(s))⇒ e({b}) ∈ dom f)
⇔ distribute implication and quantification

(∀ b: s • b ∈ e(s)⇒ e({b}) ∈ dom f) ∧
(∀ b: s • b 6∈ e(s)⇒ e({b}) ∈ dom f)

⇔ from (16) ×2
(∀ b: s • b ∈ e(s)⇒ {b} ∈ dom f) ∧
(∀ b: s • e({b}) = {} ⇒ e({b}) ∈ dom f)

⇔ restate first conjunct from Exec property (9), simplify second from (11)
(∀ b: e(s) • {b} ∈ dom f) 2

Theorem C.5 Sequential conjunction satisfies Exec property (8) .
Proof:

dom(e o
9 f)

= definition
{s: State | s ∈ dom e ∧ e(s) ∈ dom f }

= inductive hyp ×2
{s: State | s ∈ P{b: Bnd | {b} ∈ dom e} ∧ e(s) ∈ P{b: Bnd | {b} ∈ dom f }}

= Lemma B.2 ×2
{s: State | (∀ b: s • {b} ∈ dom e) ∧ (∀ b: e(s) • {b} ∈ dom f)}

= Lemma C.4
{s: State | (∀ b: s • {b} ∈ dom e) ∧ (∀ b: s • e({b}) ∈ dom f)}

= Join quantifiers
{s: State | (∀ b: s • {b} ∈ dom e ∧ e({b}) ∈ dom f))}

= definition
{s: State | (∀ b: s • {b} ∈ dom e o

9 f)}
= Lemma B.2
P{b: Bnd | {b} ∈ dom e o

9 f } 2

28

Theorem C.6 Both quantifiers satisfy Exec property (8).
Proof for s ∈ State:

s ∈ dom(exec(∃ v • S))
⇔ definition

unbind v s ∈ dom e
⇔ inductive hypothesis; Lemma B.2

(∀ b′: unbind v s • {b′} ∈ dom e)
⇔ definition

(∀ b′: {b: s, x : Val • b ⊕ {v 7→ x}} • {b′} ∈ dom e)
⇔ rewrite

(∀ b: s • {x : Val • b ⊕ {v 7→ x}} ∈ dom e)
⇔ definition

(∀ b: s • unbind v {b} ∈ dom e)
⇔ Lemma B.2

s ∈ P{b: Bnd • {b} ∈ dom(exec(∃ v • S))} 2

The proof for universal quantification is similar.

Theorem C.7 Parameterised commands satisfy Exec property (8).
Proof for s ∈ State:

s ∈ dom(call v e t)
⇔ definition

s ∈ P(dom(eval t)) ∧ assign v t s ∈ dom e
⇔ definition of eval; definition of assign

(∀ b: s • b ∈ dom(eval t)) ∧
{b: s • b ⊕ {v 7→ eval t b}} ∈ dom e

⇔ rewrite; inductive hypothesis
(∀ b: s • {b} ∈ P(dom(eval t))) ∧
(∀ b: s • {b ⊕ {v 7→ eval t b}} ∈ dom e)

⇔ join quantifiers
(∀ b: s • {b} ∈ P(dom(eval t)) ∧ assign v t {b} ∈ dom e)

⇔ definition
(∀ b: s • {b} ∈ dom(call v e t)

⇔ Lemma B.2
s ∈ P{b: Bnd | {b} ∈ dom(call v e t)} 2

C.2 Proof of increase groundedness property for all constructs

For each construct we prove

(∀ s: dom e • e(s) ⊆ s)

Theorem C.8 Specifications and assumptions satisfy Exec property (9).
Proof: This follows from inspection. 2

29

Theorem C.9 Parallel conjunction satisfies Exec property (9).
Proof: We know that s ∈ dom(e ·∩ f) ⇒ (s ∈ dom e ∧ s ∈ dom f). Inductively we assume

e(s) ⊆ s ∧ f (s) ⊆ s, and therefore e(s) ∩ f (s) ⊆ s. 2

Theorem C.10 Disjunction satisfies Exec property (9).
Proof: We know that s ∈ dom(e ·∪ f) ⇒ (s ∈ dom e ∧ s ∈ dom f). Inductively we assume

e(s) ⊆ s ∧ f (s) ⊆ s, and therefore e(s) ∪ f (s) ⊆ s. 2

Theorem C.11 Sequential conjunction satisfies Exec property (9).
Proof: We know that s ∈ dom(e o

9 f)⇒ (s ∈ dom e ∧ e(s) ∈ dom f). Inductively we assume
e(s) ⊆ s ∧ f (e(s)) ⊆ e(s), and therefore f (e(s)) ⊆ s. 2

Theorem C.12 Quantifiers and parameterised command satisfy Exec property (9).
Proof: By inspection, the result of each is a restriction on the bindings originally in s,

therefore the result can only be a subset of s. 2

C.3 Proof of range Exec property for all constructs

For each construct we prove, for all s in the domain of e,

e(s) = {b: s | e({b}) 6= {}}

We assume Exec property (8) holds for each construct, and in particular that (∀ b: s • {b} ∈
dom e).

Theorem C.13 Specifications satisfy Exec property (10).
Proof:

{b: s | ({b} ∩ P) 6= {}}
= simplify
{b: s | b ∈ P}

= simplify
s ∩ P 2

Theorem C.14 Assumptions satisfy Exec property (10).
Proof:

{b: s | {b} 6= {}}
= simplify

s 2

Theorem C.15 Parallel conjunction satisfies Exec property (10).
Proof:

{b: s | (e ·∩ f)({b}) 6= {}}
= definition
{b: s | (e({b}) ∩ f ({b})) 6= {}}

= manipulation

30

{b: s | e({b}) 6= {} ∧ f ({b}) 6= {}}
= split comprehension
{b: s | e({b}) 6= {}} ∩ {b: s | f ({b}) 6= {}}

= inductive hypothesis
e(s) ∩ f (s) 2

Theorem C.16 Disjunction satisfies Exec property (10).
Proof:

{b: s | (e ·∪ f)({b}) 6= {}}
= definition
{b: s | (e({b}) ∪ f ({b})) 6= {}}

= union of sets
{b: s | e({b}) 6= {} ∨ f ({b}) 6= {}}

= split comprehension
{b: s | e({b}) 6= {}} ∪ {b: s | f ({b}) 6= {}}

= inductive hypothesis
e(s) ∪ f (s) 2

Theorem C.17 Sequential conjunction satisfies Exec property (10).
Proof:

{b: s | (e o
9 f)({b}) 6= {}}

= definition
{b: s | f (e({b})) 6= {}}

= case analysis from (12)
{b: s | f (e({b})) 6= {} ∧

(e({b}) = {} ∨ e({b}) 6= {})}
= distribute
{b: s | (f (e({b})) 6= {} ∧ e({b}) = {}) ∨

(f (e({b})) 6= {} ∧ e({b}) 6= {})}
= simplify
{b: s | (f ({}) 6= {} ∧ e({b}) = {}) ∨

(f ({b}) 6= {} ∧ e({b}) 6= {})}
= from (11)
{b: s | f ({b}) 6= {} ∧ e({b}) 6= {}}

= inductive hypothesis on e
{b: e(s) | f ({b}) 6= {}}

= inductive hypothesis on f
f (e(s)) 2

Theorem C.18 Both quantifiers satisfy Exec property (10).
Proof:

{b: s | (exec(∃ v • c)({b})) 6= {}}
= definition
{b: s | {c: {b} | (∃ x : Val • e({c ⊕ {v 7→ x}}) 6= {})} 6= {}}

= simplification

31

{b: s | (∃ x : Val • e({b ⊕ {v 7→ x}}) 6= {})}
= definition

(exec(∃V • c))(s) 2

The proof for universal quantification is similar.

Theorem C.19 Parameterised command satisfies Exec property (10).
Proof:

{b: s | (call v e t)({b}) 6= {}}
= definition
{b: s | {c: {b} | e({c ⊕ {v 7→ eval t c}}) 6= {})} 6= {}}

= simplification
{b: s | e({b ⊕ {v 7→ eval t b}}) 6= {}}

= definition
(call v e t)(s) 2

D Lattice properties

D.1 Least upper bound of two elements in Exec

From Sect.5.1 we must show that the join of two Execs, when it is defined, returns an Exec.

(∀ s: dom e1 ∩ dom e2 • e1(s) = e2(s))⇒ e1 t e2 ∈ Exec

To prove this, we must show that the definition of least upper bound is an Exec, by satisfying
the three conditions of Definition B.1.

Theorem D.1 Least upper bound satisfies Exec property (8).
Proof:

P(
⋃

dom(e1 t e2))
= definition
P(
⋃

(P(
⋃

(dom e1 ∪ dom e2))))
= from (15)
P

⋃
(dom e1 ∪ dom e2)

= definition
dom(e1 t e2) 2

Theorem D.2 Least upper bound satisfies Exec property (9).
Proof: We must show:

(e1 t e2)(s) ⊆ s

This is trivial from the definition (restriction similar to quantifier definition). 2

Theorem D.3 Least upper bound satisfies Exec property (10).
Proof:
From Theorem D.2 and Theorem B.6, we use (16) in place of Exec property (10).

32

⋃
{b: s • (e1 t e2)({b})}

= from (16)
{b: s | (e1 t e2)({b}) 6= {}}

= definition
{b: s | {c: {b} | (e1 ∪ e2)({c}) 6= {}} 6= {}}

= simplification
{b: s | (e1 ∪ e2)({b}) 6= {}}

= definition
(e1 t e2)(s) 2

D.2 Greatest lower bound of two elements in Exec

From Sect.5.1 we must show that the greatest lower bound of two Execs returns an Exec, i.e.,
e1 ∩ e2 ∈ Exec. To prove this, we must satisfy the three conditions of Definition B.1.

Theorem D.4 Greatest lower bound satisfies Exec property (8).
Proof:

s ∈ P{b: Bnd | {b} ∈ dom(e1 ∩ e2)}
⇔ domain of intersection

s ∈ P{b: Bnd | {b} ∈ dom e1 ∧ {b} ∈ dom e2 ∧ e1({b}) = e2({b})}
⇔ from Lemma B.2

(∀ b: s • {b} ∈ dom e1 ∧ {b} ∈ dom e2 ∧ e1({b}) = e2({b}))
⇔ Distribute quantification

(∀ b: s • {b} ∈ dom e1) ∧ (∀ b: s • {b} ∈ dom e2) ∧ (∀ b: s • e1({b}) = e2({b}))}
⇔ Lemma B.2 and simplification

s ∈ dom e1 ∧ s ∈ dom e2 ∧ e1(s) = e2(s)
⇔ definition

s ∈ dom(e1 ∩ e2) 2

Theorem D.5 Greatest lower bound satisfies Exec property (9).
Proof: We know

s ∈ dom(e1 ∩ e2)⇒ (e1 ∩ e2)(s) = e1(s) (20)

Proof of Theorem D.5, assuming s ∈ dom(e1 ∩ e2):

(e1 ∩ e2)(s) ⊆ s
⇔ from (20)

e1(s) ⊆ s
⇐ inductive hypothesis 2

Theorem D.6 Greatest lower bound satisfies Exec property (10).
Proof: Assume s ∈ dom(e1 ∩ e2).⋃

{b: s • (e1 ∩ e2)({b})}
= from (20)⋃
{b: s • e1({b})}

= inductive hypothesis

33

e1(s)
= from (20)

(e1 ∩ e2)(s) 2

E Monotonicity

In this section we prove monotonicity of the refinement relations for all the constructs in our
wide-spectrum language. In each case, we have the premiss that e v e ′. Since refinement
between Execs is defined as subset, we use the following expanded form in our proofs.

dom e ⊆ dom e ′ ∧
(∀ s: dom e • e(s) = e ′(s))

(21)

For the binary constructs, we make similar assumptions for f and f ′.

Theorem E.1 Parallel conjunction is monotonic.

e ⊆ e ′ ; f ⊆ f ′

(e ·∩ f) ⊆ (e ′ ·∩ f ′)

Proof:

(e ·∩ f) ⊆ (e ′ ·∩ f ′)
⇔ definition of ·∩ ; subset of functions

(dom e ∩ dom f ⊆ dom e ′ ∩ dom f ′) ∧
(∀ s: (dom e ∩ dom f) •

(e(s) ∩ f (s) = e ′(s) ∩ f ′(s)))
⇐ (21) 2

Theorem E.2 Disjunction is monotonic.

e ⊆ e ′ ; f ⊆ f ′

(e ·∪ f) ⊆ (e ′ ·∪ f ′)

Proof:

(e ·∪ f) ⊆ (e ′ ·∪ f ′)
⇔ definition of ·∪ ; subset of functions

(dom e ∩ dom f ⊆ dom e ′ ∩ dom f ′) ∧
(∀ s: (dom e ∩ dom f) •

(e(s) ∪ f (s) = e ′(s) ∪ f ′(s)))
⇐ (21) 2

Theorem E.3 Sequential conjunction is monotonic.

e ⊆ e ′ ; f ⊆ f ′

e o
9 f ⊆ e ′ o

9 f ′

Proof:

34

(s, s ′) ∈ e o
9 f

⇔ definition
(∃ t • ((s, t) ∈ e) ∧ ((t , s ′) ∈ f))

⇒ inductive hypothesis
(∃ t • ((s, t) ∈ e ′) ∧ ((t , s ′) ∈ f ′))

⇔ definition
(s, s ′) ∈ e ′ o

9 f ′

We have (s, s ′) ∈ e o
9 f ⇒ (s, s ′) ∈ e ′ o

9 f ′, therefore e o
9 f ⊆ e ′ o

9 f ′. 2

Theorem E.4 Both quantifiers are monotonic.

e ⊆ e ′

exists v e ⊆ exists v e ′
e ⊆ e ′

forall v e ⊆ forall v e ′

Proof:
Looking at the domain restrictions on subsets of functions

dom(exists v e) ⊆ dom(exists v e ′)
⇔ definition
{s: State | unbind v s ∈ dom e} ⊆
{s: State | unbind v s ∈ dom e ′}

⇐ (21)

Now we also require for all s such that unbind v s ∈ dom e:

(exists v e)(s) = (exists v e ′)(s)
⇔ assuming type of s, and definition of exists
{b: s | (∃ x : Val • e({b ⊕ {v 7→ x}}) 6= {})} =
{b: s | (∃ x : Val • e ′({b ⊕ {v 7→ x}}) 6= {})}

Now b ∈ s ∧ unbind v s ∈ dom e implies {b ⊕ {v 7→ x}} ∈ dom e. Therefore e({b ⊕ {v 7→
x}}) = e ′({b ⊕ {v 7→ x}}). 2

The proof for universal quantification is similar. 2

Theorem E.5 Parameterised commands are monotonic.

e ⊆ e ′

call v e t ⊆ call v e ′ t

Looking at the domain restrictions on subsets of functions:

dom(call v e t) ⊆ dom(call v e ′ t)
⇔ definition
{s:P(dom eval t) | assign v t s ∈ dom e} ⊆
{s:P(dom eval t) | assign v t s ∈ dom e ′}

⇐ (21)

We also require for all s in P(dom eval t) such that assign v t s ∈ dom e:

35

(call v e t)(s) = (call v e ′ t)(s)
⇔ definition
{b: s | e(assign v t {b}) 6= {}} = {b: s | e ′(assign v t {b}) 6= {}}

⇔ rewrite
(∀ b: s • e(assign v t {b}) 6= {} ⇔ e ′(assign v t {b}) 6= {})

⇐ (21) 2

F Continuity

Recall the least upper bound of two programs:

(t) = (λ e1, e2: Exec
| (∀ s: dom e1 ∩ dom e2 • e1(s) = e2(s))
• (λ s:P(

⋃
(dom e1 ∪ dom e2))

• {b: s | (e1 ∪ e2)({b}) 6= {}}))

From the definition of t , for any two Execs such that e1 v e2, e1 t e2 is defined, and
e1 t e2 = e2.

Within the context of recursion, the infinite sets of functions form a refinement chain. Hence
we have a chain of subsets, i.e.

Chain == {ec:N→ Exec | ∀ i :N • ec(i) ⊆ ec(i + 1)}

The subset relation guarantees that the union is a function, and hence the least upper bound
of a refinement chain, ec, is defined as⊔

ec =
⋃
{i :N • ec(i)}

If ec is a Chain, then for all monotonic contexts C, (λ i :N • C(ec(i))) is also a Chain.

Continuity of operators

We wish to prove for all contexts C that

C(
⊔

ec) =
⊔

(λ i :N • C(ec(i)))

Since all contexts are monotonic, and therefore form a Chain, we may use
⋃

as the least
upper bound, i.e.,

C(
⊔

ec) =
⋃
{i :N • C(ec(i))}

In our proofs we use the following properties for all ec ∈ Chain:

(∀ j :N • s ∈ dom ec(j)⇒ ec(j)(s) = (
⊔

ec)(s)) (22)

and
(∃ j :N • s ∈ dom ec(j))⇔ s ∈ dom(

⊔
ec) (23)

36

Theorem F.1 Parallel conjunction is continuous.
To prove continuity for the first argument, we need to show

(
⊔

ec) ·∩ e =
⋃
{i :N • ec(i) ·∩ e}

Proof:

(s, s ′) ∈
⋃
{i :N • ec(i) ·∩ e}

⇔ membership in union
∃ j :N • (s, s ′) ∈ (ec(j) ·∩ e)

⇔ definition
∃ j :N • s ∈ dom ec(j) ∧ s ∈ dom e ∧

s ′ = ec(j)(s) ∩ e(s)
⇔ from (22)
∃ j :N • s ∈ dom ec(j) ∧ s ∈ dom e ∧

s ′ = (
⊔

ec)(s) ∩ e(s)
⇔ reduce scope of j , (23)

s ∈ dom(
⊔

ec) ∧ s ∈ dom e ∧
s ′ = (

⊔
ec)(s) ·∩ e(s)

⇔ definition
(s, s ′) ∈ (

⊔
ec) ·∩ e 2

The proof for the second argument is similar.

Theorem F.2 Disjunction is continuous.
To prove continuity for the first argument, we need to show

(
⊔

ec) ·∪ e =
⋃
{i :N • ec(i) ·∪ e}

Proof:

(s, s ′) ∈
⋃
{i :N • ec(i) ·∪ e}

⇔ membership in union
∃ j :N • (s, s ′) ∈ (ec(j) ·∪ e)

⇔ definition
∃ j :N • s ∈ dom ec(j) ∧ s ∈ dom e ∧

s ′ = ec(j)(s) ∪ e(s)
⇔ from (22)
∃ j :N • s ∈ dom ec(j) ∧ s ∈ dom e ∧

s ′ = (
⊔

ec)(s) ∪ e(s)
⇔ reduce scope of j , (23)

s ∈ dom(
⊔

ec) ∧ s ∈ dom e ∧
s ′ = (

⊔
ec)(s) ∪ e(s)

⇔ definition
(s, s ′) ∈ (

⊔
ec) ·∪ e 2

The proof for the second argument is similar.

37

Theorem F.3 Sequential conjunction is continuous in the first argument .
We need to show:

(
⊔

ec) o
9 e =

⋃
{i :N • ec(i) o

9 e}

Proof:

(s, s ′) ∈
⋃
{i :N • ec(i) o

9 e}
⇔ containment in union
∃ j :N • (s, s ′) ∈ (ec(j) o

9 e)
⇔ function composition
∃ j :N • ∃ t : State •

(s, t) ∈ ec(j) ∧ (t , s ′) ∈ e
⇔ reduce scope of j
∃ t : State •

(∃ j :N • (s, t) ∈ ec(j)) ∧ (t , s ′) ∈ e
⇔ membership in union
∃ t : State • (s, t) ∈ (

⊔
ec) ∧ (t , s ′) ∈ e

⇔ function composition
(s, s ′) ∈ (

⊔
ec) o

9 e 2

Theorem F.4 Sequential conjunction is continuous in the second argument.
We need to show:

e o
9 (
⊔

ec) =
⋃
{i :N • e o

9 ec(i)}

Proof:

(s, s ′) ∈
⋃
{i :N • e o

9 ec(i)}
⇔ containment in union
∃ j :N • (s, s ′) ∈ (e o

9 ec(j))
⇔ function composition
∃ j :N • ∃ t : State •

(s, t) ∈ e ∧ (t , s ′) ∈ ec(j)
⇔ reduce scope of j
∃ t : State •

(s, t) ∈ e ∧ (∃ j :N • (t , s ′) ∈ ec(j))
⇔ membership in union
∃ t : State •

(s, t) ∈ e ∧ (t , s ′) ∈ (
⊔

ec)
⇔ function composition

(s, s ′) ∈ e o
9 (
⊔

ec) 2

To prove continuity of the quantifiers, we require the following lemma:

Lemma F.5

unbind v s ∈ dom e ⇒ (∀ b: s • {b ⊕ {v 7→ x}} ∈ dom e)

Proof:

38

unbind v s ∈ dom e
⇔ Exec property (8) and Lemma B.2

(∀ b: unbind v s • {b} ∈ dom e)
⇔ definition

(∀ b: {b: s; x : Val • b ⊕ {v 7→ x}} • {b} ∈ dom e)
⇔ simplify

(∀ b: s • {b ⊕ {v 7→ x}} ∈ dom e) 2

Theorem F.6 Both quantifiers are continuous.
We need to show:

exists v (
⊔

ec) =
⋃
{i :N • exists v ec(i)}

Proof:

(s, s ′) ∈
⋃
{i :N • (exists v ec(i))}

⇔ membership in union
∃ j :N • (s, s ′) ∈ exists v ec(j)

⇔ membership in function
∃ j :N • s ∈ dom(exists v ec(j)) ∧

s ′ = (exists v ec(j))(s)
⇔ definition
∃ j :N • unbind v s ∈ dom ec(j) ∧

s ′ = {b: s | (∃ x : Val • ec(j)({b ⊕ {v 7→ x}}) 6= {})}
⇔ from (F.5) and (22)
∃ j :N • unbind v s ∈ dom ec(j) ∧

s ′ = {b: s | (∃ x : Val • (
⊔

ec)({b ⊕ {v 7→ x}}) 6= {})}
⇔ reduce scope of j , (23)

unbind v s ∈ dom
⊔

ec ∧
s ′ = {b: s | (∃ x : Val • (

⊔
ec)({b ⊕ {v 7→ x}}) 6= {})}

⇔ definition
(s, s ′) ∈ exists v (

⊔
ec) 2

The proof for universal quantification is similar. 2

To prove continuity of parameterised commands, we use the following lemma:

Lemma F.7

assign v t s ∈ dom e ⇒ (∀ b: s • assign v t {b} ∈ dom e)

Proof:

assign v t s ∈ dom e
⇔ Exec property (8) and Lemma B.2

(∀ b: assign v t s • {b} ∈ dom e)
⇔ definition

(∀ b: {b: s • b ⊕ {v 7→ eval t b}} • {b} ∈ dom e)
⇔ simplify

39

(∀ b: s • {b ⊕ {v 7→ eval t b}} ∈ dom e)
⇔ definition

(∀ b: s • assign v t {b} ∈ dom e) 2

Theorem F.8 Parameterised commands are continuous.
Using the definition of call, we need to show:

call v (
⊔

ec) t =
⋃
{i :N • call v ec(i) t}

Proof:

(s, s ′) ∈
⋃
{i :N • call v ec(i) t}

⇔ membership in union
∃ j :N • (s, s ′) ∈ call v ec(j) t

⇔ membership in function
∃ j :N • s ∈ dom(call v ec(j) t) ∧

s ′ = (call v ec(j) t)(s)
⇔ definition
∃ j :N • s ⊆ dom(eval t) ∧ assign v t s ∈ dom ec(j) ∧

s ′ = {b: s | ec(j)(assign v t {b}) 6= {}}
⇔ from Lemma F.7 and (22)
∃ j :N • s ⊆ dom(eval t) ∧ assign v t s ∈ dom ec(j) ∧

s ′ = {b: s | (
⊔

ec)(assign v t {b}) 6= {}}
⇔ reduce scope of j , (23)

s ⊆ dom(eval t) ∧ assign v t s ∈ dom(
⊔

ec) ∧
s ′ = {b: s | (

⊔
ec)(assign v t {b}) 6= {}}

⇔ definition
(s, s ′) ∈ call v (

⊔
ec) t 2

40

	Introduction
	Wide-spectrum language
	Domains
	Variables, values, and functors
	Bindings
	States and predicates
	Terms

	Program execution
	Executions
	Semantic function for commands
	Specifications and assumptions
	Propositional operators
	Quantifiers

	Refinement
	Lattice properties

	Procedures and parameters
	Environments
	Parametrised commands
	Parametrised executions
	Refinement
	Procedure call
	Lattice properties

	Recursion
	Semantics of recursion blocks
	Constructing the fix-point
	Example

	Recursion introduction
	Refinement law
	Example

	Conclusions
	Summary of notation
	Definition of Exec
	Equivalent forms of Exec property (8)
	Equivalent forms of Exec property (10)

	Properties of Execs
	Proof of Exec domain property for all constructs
	Proof of increase groundedness property for all constructs
	Proof of range Exec property for all constructs

	Lattice properties
	Least upper bound of two elements in Exec
	Greatest lower bound of two elements in Exec

	Monotonicity
	Continuity

