418 research outputs found

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201

    Statistical Characterization of Indian Residential Networks for Powerline Communication

    Get PDF
    Despite different powerline channel modeling techniques, developed so far, there are still specific dynamic, varying parameters (viz. the random load variation and inconsistent electrical wiring) to be studied for a valid and reliable power line communication (PLC) model. Statistical characterization of PLC channel may provide the required background for refinement of these existent models. In this paper, the Indian residential networks are statistically analyzed in the frequency range of 1-100 MHz. This also includes the comprehensive analysis of line impedance, stationary noise, channel capacity and average channel gain. From the measurements, the noise spectrum density is found to be less than -90 dBm at a frequency less than 1 MHz and is almost constant after 70 MHz. The minimum and maximum channel capacity of the network is 71.5 Mbps and 97.7 Mbps respectively. The Average channel gain is estimated at -30 dB. The paper also reviews the channel transfer function developed by top-down and bottom-top approaches.  Finally, some additional factors influencing the PLC channel are also discussed

    Characterization and Emulation of Low-Voltage Power Line Channels for Narrowband and Broadband Communication

    Get PDF
    The demand for smart grid and smart home applications has raised the recent interest in power line communication (PLC) technologies, and has driven a broad set of deep surveys in low-voltage (LV) power line channels. This book proposes a set of novel approaches, to characterize and to emulate LV power line channels in the frequency range from0.15to 10 MHz, which closes gaps between the traditional narrowband (up to 500 kHz) and broadband (above1.8 MHz) ranges

    Characterization and Emulation of Low-Voltage Power Line Channels for Narrowband and Broadband Communication

    Get PDF
    The demand for smart grid and smart home applications has raised the recent interest in power line communication (PLC) technologies, and has driven a broad set of deep surveys in low-voltage (LV) power line channels. This book proposes a set of novel approaches, to characterize and to emulate LV power line channels in the frequency range from0.15to 10 MHz, which closes gaps between the traditional narrowband (up to 500 kHz) and broadband (above1.8 MHz) ranges

    Power line communication impedance profiling and matching for broadband applications.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Power line communication(PLC) is a wired communication technology that has recently re- ceived a lot of attention due to its attractive prospects towards home and /or neighborhood network applications as well as smart grid technologies. It allows establishing digital com- munications without any additional wiring requirements. Effectively, one’s home and/or neighborhood wiring contributes into a smart grid to deploy various data services. It is well known that the power grid is one of the most pervasive infrastructure built to provide electricity to customers, therefore, utilizing this infrastructure for digital communications will only result in an ubiquitous telecommunications network. It is common practice to use wires to establish a physical connection in many telecommunications channels, but most electronic devices already have a pair of wires connected to the power lines. Therefore, these wires can be used to simultaneously establish digital communications. Thus, power line communications can be used as an alternative solution to more established technologies such as wireless, coaxial and optical communications. As a promising technology, PLC has attracted a lot of research and has become an active area of research which continues to evolve over time. Notwithstanding its advantages, PLC has issues, namely, severe noise at low frequencies and varying characteristic impedance. This is primarily because the power line channel was not originally designed to be used for communications, thus, it remains a harsh channel. Other challenges arise from the fact that there are different wiring practices around the world, unpredictable loading characteristics as well as differential- and common-mode characteristic impedance. As a result, there is a considerable amount of noise signal attenuation during data transmission. Loss of signal can be addressed by increasing the power at the transmitter, noise reduction and/or reducing channel attenuation to improve the signal-to-noise ratio. However, PLC modems are subject to legislation that impose a limit with regards to the signal levels in the lines. Power lines are good radiators at high frequencies which makes them behave like large antennas with the ability to intercept other radiations in the same frequency range. The radiated signal is proportional to the currents in the line, thus, increasing line currents will not solve the problem but would rather lead to violation of electromagnetic compatibility (EMC) regulations. In this work, an alternative solution is provided which seeks to address the issue of signal attenuation caused by the changing input impedance of a typical power line channel. The deleterious effects of noise are not considered since this work focuses on broadband PLC in the 1–30 MHz frequency range. The objective of this work was to design and build an impedance adaptive coupler to mitigate effects of channel attenuation caused by varying impedance. In this way, the propagating signal will “see” a uniform impedance and as a result the data output will be improved. The work was facilitated by measuring several impedance profiles of PLC channels in the band of interest. Typically, the network topology of PLC networks is not known and the building architectural blueprints are not always readily available. To overcome this issue,this work was performed on power line test-beds designed to mimic varied typical PLC network topologies. Moreover, there is an additional benefit in that it is possible to relate the output impedance profile to the network topology. The channel input impedance characteristics were determined in a deterministic manner by considering a power line network as a cascade of parallel resonant circuits and applying transmission line theory to develop the model. The model was validated by measurements with good agreement over the frequency range was considered. Several measurements were then used to determine the minimum, average and maximum input impedance that a signal will experience as it traverses the channel. It was found that, regardless of the network size (in terms of number of branches), the average input impedance is 354 ± 1.1 % Ω in the 1-30 MHz frequency band. Due to the unpredictable nature of the input impedance of the power line network, an impedance adaptive bidirectional coupler for broadband power line communications was designed. The impedance matching is achieved by using typical L-section matching networks in the 1–30 MHz band. The matching section of the coupler has the characteristics of a lowpass filter while the coupling section is a highpass filter, effectively forming a bandpass network. The simulated transfer characteristics of the designed coupler performs very well for impedances starting around 150 Ω and the performance improves a great deal as the impedance increases. The coupler can still be improved to accommodate much lower input impedances (as low as 50 Ω). However, based on the measured results of input impedance, it was observed that the power line channel impedance is statistically higher than 200 Ω most of the time which makes the presented design acceptable

    EXPERIMENTAL ACTIVITY AND ANALYSIS OF PLC TECHNOLOGY IN VARIOUS SCENARIOS

    Get PDF
    Power line communications (PLCs) have become a key technology in the telecommunication world, both in terms of stand-alone technology or a technology that can complement other systems, e.g., radio communications. Since PLCs exploit the existing power delivery grid to convey data signals, the application scenarios are multiple. Historically, PLCs have been deployed in outdoor low voltage (< 1 kV) power distribution networks for the automatic metering and the management of the loads. Today, the evolution of the electrical grid toward an intelligent and smart grid that dynamically manages the generation, the distribution and the consumption of the power makes this technology still relevant in this scenario. Therefore, PLCs have raised significant interest in recent years for the possibility of delivering broadband Internet access and high speed services to homes and within the home. The increase in demand for such services has inspired the research activity in the in-home scenario, both toward the direction of the development of independent or integrated solutions, with respect to already existing technologies. Another application scenario that has not been deeply investigated yet is the in-vehicle one, which includes the in-car, in-plane and in-ship scenario. Since the power grid has not been designed for data communications, the transmission medium is hostile and exhibits high attenuation, multipath propagation and frequency selectivity, due to the presence of branches, discontinuities and unmatched loads. For the proper design of a power line communication (PLC) system, good knowledge of the grid characteristics in terms of propagation channel and disturbances is required. In this respect, we have performed experimental measurement campaigns in all the aforementioned scenarios. We aimed to investigate the grid characteristics from a telecommunication point of view. In this thesis, we present the results of our experimental activity. Firstly, we analyze the outdoor low voltage and industrial scenario. We have carried out a measurement campaign in an artificial network that can resemble either an outdoor low voltage power distribution network or an industrial or marine power system. We have focused on the channel frequency response, the line impedance and the background PLC noise, within the narrow band and the broad band frequency ranges. Then, we focus on the in-home scenario. In this context, we have studied the impact of the electrical devices (loads) connected to the power grid on the PLC medium characteristics and on the quality of the data communication. Their behavior has been investigated both in the time and frequency domain, in terms of load impedance and impulsive noise components that they inject into the network. Finally, we consider in-vehicle PLC, in particular the in-ship and in-car environment. Firstly, we summarize the results of a channel measurement campaign that we have carried out in a large cruise ship focusing on the low voltage power distribution network in the band 0-50 MHz. Thus, we present the results of an entire PLC noise and channel measurement campaign that we have performed in a compact electrical car

    Channel characterization for broadband powerline communications.

    Get PDF
    Ph. D. University of KwaZulu-Natal, Durban 2014.The main limiting factor in broadband powerline communications is the presence of impedance discontinuities in the wired channel. This phenomenon is present in both outdoor and indoor powerline communication (PLCs) channels. It has been established that the impedance of the electrical loads and line branching are the main causes of impedance discontinuities in PLC channel networks. Accurate knowledge of the expected impedances of the corresponding discontinuity points would be vital in order to characterize the channel for signal transmission. However, the PLC channel network topologies lead to different branching structures. Additionally, the existence of a myriad of electrical loads, whose noise and impedance vary with frequency, are a motivation for a rigorous design methodology in order to achieve a pragmatic channel model. In order to develop such a channel model, an approach similar to the one applied in radio propagation channel modeling is adopted, where specific attenuation determined at a point is used in predicting the attenuation for the entire power cable length. Therefore, the powerline is modeled with the assumption of a randomly spread multitude of scatterers in the vicinity of the channel with only a sufficient number of impedance discontinuity points. The line is considered as a single homogeneous element with its length divided into a grid of small areas with dimensions that range from 0.5 to 3 mm. Thus, each small area transmits an echo and the forward scattered response gets to the receiver. With this approach, point specific attenuation along the line is proposed and used to derive the channel transfer function. Measurement results show that both the analytical specific attenuation model developed in this work and the channel transfer function are feasible novel ideas in PLC channel network characterization. It is seen from the measurements that the signal attenuation is directly proportional to the number of branches, and this is in line with the findings of previous researchers. A comparison between the measured values and the simulation results of the frequency response shows a very good agreement. The agreement demonstrates applicability of the models in a practical enviroment. Thus we conclude that the models developed do not require knowledge either of the link topology or the cable models but requires an extensive measurement campaign
    • …
    corecore