750,524 research outputs found

    Understanding Architecture Erosion: The Practitioners' Perceptive

    Get PDF
    As software systems evolve, their architecture is meant to adapt accordingly by following the changes in requirements, the environment, and the implementation. However, in practice, the evolving system often deviates from the architecture, causing severe consequences to system maintenance and evolution. This phenomenon of architecture erosion has been studied extensively in research, but not yet been examined from the point of view of developers. In this exploratory study, we look into how developers perceive the notion of architecture erosion, its causes and consequences, as well as tools and practices to identify and control architecture erosion. To this end, we searched through several popular online developer communities for collecting data of discussions related to architecture erosion. Besides, we identified developers involved in these discussions and conducted a survey with 10 participants and held interviews with 4 participants. Our findings show that: (1) developers either focus on the structural manifestation of architecture erosion or on its effect on run-time qualities, maintenance and evolution; (2) alongside technical factors, architecture erosion is caused to a large extent by non-technical factors; (3) despite the lack of dedicated tools for detecting architecture erosion, developers usually identify erosion through a number of symptoms; and (4) there are effective measures that can help to alleviate the impact of architecture erosion.Comment: The 29th IEEE/ACM International Conference on Program Comprehension (ICPC

    Managing software evolution through midleware and policy-based software adaptation framework

    Get PDF
    Software evolution is a process that is needed in order for software to remain useful. Thus, software evolution should be properly planned and controlled to prevent its negative impact from affecting any organization. Software adaptation concept is one of the promising ways to control software evolution. In this approach, software is made adaptable to minimize the impact of change. A lot of researches on software adaptation focus on adaptability of mobile based and network application due to its context sensitivity and quality-of-service requirements. However, there is still lack of work in enterprise system domain with multiple delivery channels, which focus on adaptability of its context environment such as the changes introduced to its devices. Hence, the purpose of this research is to develop a middleware and policy-based, adaptation framework to manage negative effects of software evolution in an enterprise system. The main research focus is on the changes introduced at the device layer. The concept of policy is used to specify adaptations requirements. This research provides a framework called Middleware and Policy-Based Framework to Manage Software Evolution (MiPAF), which can be used to develop adaptive software, allowing parameterized and compositional adaptation. Furthermore, the framework can be used by client-server and web-based application. A policy language called MiPAF Policy Language (MPL) is created to be used with the framework. MiPAF is formally specified using Z Notation and the policy language is described using pseudo code. A tool is provided to assist developers in creating the policy. For evaluation of the framework, a set of runtime components were developed and implemented for Unit Trust System (UTS) Front-end and web-based UTS, two industrial-based case studies. The evaluation result shows that MiPAF excellently fulfil all the evaluation criteria described in this thesis

    Feature Model-Guided Online Reinforcement Learning for Self-Adaptive Services

    Get PDF
    International audienceA self-adaptive service can maintain its QoS requirements in the presence of dynamic environment changes. To develop a self-adaptive service, service engineers have to create self-adaptation logic encoding when the service should execute which adaptation actions. However, developing self-adaptation logic may be difficult due to design time uncertainty ; e.g., anticipating all potential environment changes at design time is in most cases infeasible. Online reinforcement learning addresses design time uncertainty by learning suitable adaptation actions through interactions with the environment at runtime. To learn more about its environment, reinforcement learning has to select actions that were not selected before, which is known as exploration. How exploration happens has an impact on the performance of the learning process. We focus on two problems related to how a service's adaptation actions are explored: (1) Existing solutions randomly explore adaptation actions and thus may exhibit slow learning if there are many possible adaptation actions to choose from. (2) Existing solutions are unaware of service evolution, and thus may explore new adaptation actions introduced during such evolution rather late. We propose novel exploration strategies that use feature models (from software product line engineering) to guide exploration in the presence of many adaptation actions and in the presence of service evolution. Experimental results for a self-adaptive cloud management service indicate an average speed-up of the learning process of 58.8% in the presence of many adaptation actions, and of 61.3% in the presence of service evolution. The improved learning performance in turn led to an average QoS improvement of 7.8% and 23.7% respectively

    Feature-Model-Guided Online Learning for Self-Adaptive Systems

    Full text link
    A self-adaptive system can modify its own structure and behavior at runtime based on its perception of the environment, of itself and of its requirements. To develop a self-adaptive system, software developers codify knowledge about the system and its environment, as well as how adaptation actions impact on the system. However, the codified knowledge may be insufficient due to design time uncertainty, and thus a self-adaptive system may execute adaptation actions that do not have the desired effect. Online learning is an emerging approach to address design time uncertainty by employing machine learning at runtime. Online learning accumulates knowledge at runtime by, for instance, exploring not-yet executed adaptation actions. We address two specific problems with respect to online learning for self-adaptive systems. First, the number of possible adaptation actions can be very large. Existing online learning techniques randomly explore the possible adaptation actions, but this can lead to slow convergence of the learning process. Second, the possible adaptation actions can change as a result of system evolution. Existing online learning techniques are unaware of these changes and thus do not explore new adaptation actions, but explore adaptation actions that are no longer valid. We propose using feature models to give structure to the set of adaptation actions and thereby guide the exploration process during online learning. Experimental results involving four real-world systems suggest that considering the hierarchical structure of feature models may speed up convergence by 7.2% on average. Considering the differences between feature models before and after an evolution step may speed up convergence by 64.6% on average. [...

    Adaptive development and maintenance of user-centric software systems

    Get PDF
    A software system cannot be developed without considering the various facets of its environment. Stakeholders – including the users that play a central role – have their needs, expectations, and perceptions of a system. Organisational and technical aspects of the environment are constantly changing. The ability to adapt a software system and its requirements to its environment throughout its full lifecycle is of paramount importance in a constantly changing environment. The continuous involvement of users is as important as the constant evaluation of the system and the observation of evolving environments. We present a methodology for adaptive software systems development and maintenance. We draw upon a diverse range of accepted methods including participatory design, software architecture, and evolutionary design. Our focus is on user-centred software systems

    A Taxonomy for a Constructive Approach to Software Evolution

    Get PDF
    In many software design and evaluation techniques, either the software evolution problem is not systematically elaborated, or only the impact of evolution is considered. Thus, most of the time software is changed by editing the components of the software system, i.e. breaking down the software system. The software engineering discipline provides many mechanisms that allow evolution without breaking down the system; however, the contexts where these mechanisms are applicable are not taken into account. Furthermore, the software design and evaluation techniques do not support identifying these contexts. In this paper, we provide a taxonomy of software evolution that can be used to identify the context of the evolution problem. The identified contexts are used to retrieve, from the software engineering discipline, the mechanisms, which can evolve the software software without breaking it down. To build such a taxonomy, we build a model for software evolution and use this model to identify the factors that effect the selection of software evolution\ud mechanisms. Our approach is based on solution sets, however; the contents of these sets may vary at different stages of the software life-cycle. To address this problem, we introduce perspectives; that are filters to select relevant elements from a solution set. We apply our taxonomy to a parser tool to show how it coped with problematic evolution problems

    Change Impact Analysis based on Formalization of Trace Relations for Requirements

    Get PDF
    Evolving customer needs is one of the driving factors in software development. There is a need to analyze the impact of requirement changes in order to determine possible conflicts and design alternatives influenced by these changes. The analysis of the impact of requirement changes on related requirements can be based on requirements traceability. In this paper, we propose a requirements metamodel with well defined types of requirements relations. This metamodel represents the common concepts extracted from some prevalent requirements engineering approaches. The requirements relations in the metamodel are used to trace related requirements for change impact analysis. We formalize the relations. Based on this formalization, we define change impact rules for requirements. As a case study, we apply these rules to changes in the requirements specification for Course Management System

    Using real options to select stable Middleware-induced software architectures

    Get PDF
    The requirements that force decisions towards building distributed system architectures are usually of a non-functional nature. Scalability, openness, heterogeneity, and fault-tolerance are examples of such non-functional requirements. The current trend is to build distributed systems with middleware, which provide the application developer with primitives for managing the complexity of distribution, system resources, and for realising many of the non-functional requirements. As non-functional requirements evolve, the `coupling' between the middleware and architecture becomes the focal point for understanding the stability of the distributed software system architecture in the face of change. It is hypothesised that the choice of a stable distributed software architecture depends on the choice of the underlying middleware and its flexibility in responding to future changes in non-functional requirements. Drawing on a case study that adequately represents a medium-size component-based distributed architecture, it is reported how a likely future change in scalability could impact the architectural structure of two versions, each induced with a distinct middleware: one with CORBA and the other with J2EE. An option-based model is derived to value the flexibility of the induced-architectures and to guide the selection. The hypothesis is verified to be true for the given change. The paper concludes with some observations that could stimulate future research in the area of relating requirements to software architectures

    Some Findings Concerning Requirements in Agile Methodologies

    Get PDF
    gile methods have appeared as an attractive alternative to conventional methodologies. These methods try to reduce the time to market and, indirectly, the cost of the product through flexible development and deep customer involvement. The processes related to requirements have been extensively studied in literature, in most cases in the frame of conventional methods. However, conclusions of conventional methodologies could not be necessarily valid for Agile; in some issues, conventional and Agile processes are radically different. As recent surveys report, inadequate project requirements is one of the most conflictive issues in agile approaches and better understanding about this is needed. This paper describes some findings concerning requirements activities in a project developed under an agile methodology. The project intended to evolve an existing product and, therefore, some background information was available. The major difficulties encountered were related to non-functional needs and management of requirements dependencies
    corecore