6,696 research outputs found

    The First 15 Years of SEFDM: A Brief Survey

    Get PDF
    Spectrally efficient frequency division multiplexing (SEFDM) is a multi-carrier signal waveform, which achieves higher spectral efficiency, relative to conventional orthogonal frequency division multiplexing (OFDM), by violating the orthogonality of its sub-carriers. This survey provides the history of SEFDM development since its inception in 2003, covering fundamentals and concepts, wireless and optical communications applications, circuit design and experimental testbeds. We focus on work done at UCL and outline work done other universities and research laboratories worldwide. We outline techniques to improve the performance of SEFDM and its practical utility with focus on signal generation, detection and channel estimation

    Extremely low frequency based communication link

    Get PDF
    The paper discusses the literature review and the possibility of using the ground itself as transmission medium for various users’ transceivers and an administrator transceiver using Multi-Carrier-Direct Sequence-Code Division Multiple Access (MC-DS-CDMA), Orthogonal Frequency Division Multiplexing (OFDM),16-Quadrature Amplitude Modulation (16-QAM), Frequency Division Duplex (FDD) and Extremely Low Frequency (ELF) band for the applications of Oil Well Telemetry, remote control of power substations or any system that its responding time is not critical

    Visualization on colour based flow vector of thermal image for movement detection during interactive session

    Get PDF
    Recently thermal imaging is exploited in applications such as motion and face detection. It has drawn attention many researchers to build such technology to improve lifestyle. This work proposed a technique to detect and identify a motion in sequence images for the application in security monitoring system or outdoor surveillance. Conventional system might cause false information with the present of shadow. Thus, methods employed in this work are Canny edge detector method, Lucas Kanade and Horn Shunck algorithms, to overcome the major problem when using thresholding method, which is only intensity or pixel magnitude is considered instead of relationships between the pixels. The results obtained could be observed in flow vector parameter and the segmentation colour based image for the time frame from 1 to 10 seconds. The visualization of both the parameters clarified the movement and changes of pixel intensity between two frames by the supportive colour segmentation, either in smooth or rough motion. Thus, this technique may contribute to others application such as biometrics, military system, and surveillance machine

    Intersymbol and Intercarrier Interference in OFDM Transmissions through Highly Dispersive Channels

    Get PDF
    This work quantifies, for the first time, intersymbol and intercarrier interferences induced by very dispersive channels in OFDM systems. The resulting achievable data rate for \wam{suboptimal} OFDM transmissions is derived based on the computation of signal-to-interference-plus-noise ratio for arbitrary length finite duration channel impulse responses. Simulation results point to significant differences between data rates obtained via conventional formulations, for which interferences are supposed to be limited to two or three blocks, versus the data rates considering the actual channel dispersion

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER
    • …
    corecore