3,057 research outputs found

    Duality of privacy amplification against quantum adversaries and data compression with quantum side information

    Full text link
    We show that the tasks of privacy amplification against quantum adversaries and data compression with quantum side information are dual in the sense that the ability to perform one implies the ability to perform the other. These are two of the most important primitives in classical information theory, and are shown to be connected by complementarity and the uncertainty principle in the quantum setting. Applications include a new uncertainty principle formulated in terms of smooth min- and max-entropies, as well as new conditions for approximate quantum error correction.Comment: v2: Includes a derivation of an entropic uncertainty principle for smooth min- and max-entropies. Discussion of the Holevo-Schumacher-Westmoreland theorem remove

    Heuristic Solutions for Loading in Flexible Manufacturing Systems

    Get PDF
    Production planning in flexible manufacturing system deals with the efficient organization of the production resources in order to meet a given production schedule. It is a complex problem and typically leads to several hierarchical subproblems that need to be solved sequentially or simultaneously. Loading is one of the planning subproblems that has to addressed. It involves assigning the necessary operations and tools among the various machines in some optimal fashion to achieve the production of all selected part types. In this paper, we first formulate the loading problem as a 0-1 mixed integer program and then propose heuristic procedures based on Lagrangian relaxation and tabu search to solve the problem. Computational results are presented for all the algorithms and finally, conclusions drawn based on the results are discussed

    A Quantum Algorithm To Locate Unknown Hashes For Known N-Grams Within A Large Malware Corpus

    Full text link
    Quantum computing has evolved quickly in recent years and is showing significant benefits in a variety of fields. Malware analysis is one of those fields that could also take advantage of quantum computing. The combination of software used to locate the most frequent hashes and nn-grams between benign and malicious software (KiloGram) and a quantum search algorithm could be beneficial, by loading the table of hashes and nn-grams into a quantum computer, and thereby speeding up the process of mapping nn-grams to their hashes. The first phase will be to use KiloGram to find the top-kk hashes and nn-grams for a large malware corpus. From here, the resulting hash table is then loaded into a quantum machine. A quantum search algorithm is then used search among every permutation of the entangled key and value pairs to find the desired hash value. This prevents one from having to re-compute hashes for a set of nn-grams, which can take on average O(MN)O(MN) time, whereas the quantum algorithm could take O(N)O(\sqrt{N}) in the number of table lookups to find the desired hash values.Comment: IEEE Quantum Week 2020 Conferenc

    Tight Finite-Key Analysis for Quantum Cryptography

    Get PDF
    Despite enormous progress both in theoretical and experimental quantum cryptography, the security of most current implementations of quantum key distribution is still not established rigorously. One of the main problems is that the security of the final key is highly dependent on the number, M, of signals exchanged between the legitimate parties. While, in any practical implementation, M is limited by the available resources, existing security proofs are often only valid asymptotically for unrealistically large values of M. Here, we demonstrate that this gap between theory and practice can be overcome using a recently developed proof technique based on the uncertainty relation for smooth entropies. Specifically, we consider a family of Bennett-Brassard 1984 quantum key distribution protocols and show that security against general attacks can be guaranteed already for moderate values of M.Comment: 11 pages, 2 figure

    Efficient and Playful Tools to Teach Unix to New Students

    Full text link
    Teaching Unix to new students is a common tasks in many higher schools. This paper presents an approach to such course where the students progress autonomously with the help of the teacher. The traditional textbook is complemented with a wiki, and the main thread of the course is a game, in the form of a treasure hunt. The course finishes with a lab exam, where students have to perform practical manipulations similar to the ones performed during the treasure hunt. The exam is graded fully automatically. This paper discusses the motivations and advantages of the approach, and gives an overall view of the tools we developed. The tools are available from the web, and open-source, hence re-usable outside the Ensimag.Comment: ITiCSE, Darmstadt : Germany (2011
    • …
    corecore