14 research outputs found

    The Guppy Effect as Interference

    Full text link
    People use conjunctions and disjunctions of concepts in ways that violate the rules of classical logic, such as the law of compositionality. Specifically, they overextend conjunctions of concepts, a phenomenon referred to as the Guppy Effect. We build on previous efforts to develop a quantum model that explains the Guppy Effect in terms of interference. Using a well-studied data set with 16 exemplars that exhibit the Guppy Effect, we developed a 17-dimensional complex Hilbert space H that models the data and demonstrates the relationship between overextension and interference. We view the interference effect as, not a logical fallacy on the conjunction, but a signal that out of the two constituent concepts, a new concept has emerged.Comment: 10 page

    Meaning-focused and Quantum-inspired Information Retrieval

    Full text link
    In recent years, quantum-based methods have promisingly integrated the traditional procedures in information retrieval (IR) and natural language processing (NLP). Inspired by our research on the identification and application of quantum structures in cognition, more specifically our work on the representation of concepts and their combinations, we put forward a 'quantum meaning based' framework for structured query retrieval in text corpora and standardized testing corpora. This scheme for IR rests on considering as basic notions, (i) 'entities of meaning', e.g., concepts and their combinations and (ii) traces of such entities of meaning, which is how documents are considered in this approach. The meaning content of these 'entities of meaning' is reconstructed by solving an 'inverse problem' in the quantum formalism, consisting of reconstructing the full states of the entities of meaning from their collapsed states identified as traces in relevant documents. The advantages with respect to traditional approaches, such as Latent Semantic Analysis (LSA), are discussed by means of concrete examples.Comment: 11 page

    The Quantum Challenge in Concept Theory and Natural Language Processing

    Full text link
    The mathematical formalism of quantum theory has been successfully used in human cognition to model decision processes and to deliver representations of human knowledge. As such, quantum cognition inspired tools have improved technologies for Natural Language Processing and Information Retrieval. In this paper, we overview the quantum cognition approach developed in our Brussels team during the last two decades, specifically our identification of quantum structures in human concepts and language, and the modeling of data from psychological and corpus-text-based experiments. We discuss our quantum-theoretic framework for concepts and their conjunctions/disjunctions in a Fock-Hilbert space structure, adequately modeling a large amount of data collected on concept combinations. Inspired by this modeling, we put forward elements for a quantum contextual and meaning-based approach to information technologies in which 'entities of meaning' are inversely reconstructed from texts, which are considered as traces of these entities' states.Comment: 5 page

    Concepts and Their Dynamics: A Quantum-Theoretic Modeling of Human Thought

    Full text link
    We analyze different aspects of our quantum modeling approach of human concepts, and more specifically focus on the quantum effects of contextuality, interference, entanglement and emergence, illustrating how each of them makes its appearance in specific situations of the dynamics of human concepts and their combinations. We point out the relation of our approach, which is based on an ontology of a concept as an entity in a state changing under influence of a context, with the main traditional concept theories, i.e. prototype theory, exemplar theory and theory theory. We ponder about the question why quantum theory performs so well in its modeling of human concepts, and shed light on this question by analyzing the role of complex amplitudes, showing how they allow to describe interference in the statistics of measurement outcomes, while in the traditional theories statistics of outcomes originates in classical probability weights, without the possibility of interference. The relevance of complex numbers, the appearance of entanglement, and the role of Fock space in explaining contextual emergence, all as unique features of the quantum modeling, are explicitly revealed in this paper by analyzing human concepts and their dynamics.Comment: 31 pages, 5 figure

    The Tacit ‘Quantum’ of Meeting the Aesthetic Sign; Contextualize, Entangle, Superpose, Collapse or Decohere

    Get PDF
    The semantically ambiguous nature of the sign and aspects of non-classicality of elementary matter as described by quantum theory show remarkable coherent analogy. We focus on how the ambiguous nature of the image, text and art work bears functional resemblance to the dynamics of contextuality, entanglement, superposition, collapse and decoherence as these phenomena are known in quantum theory. These quantumlike properties in linguistic signs have previously been identified in formal descritions of e.g. concept combinations and mental lexicon representations and have been reported on in the literature. In this approach the informationalized, communicated, mediatized conceptual configuration—of e.g. the art work—in the personal reflected mind behaves like a quantum state function in a higher dimensional complex space, in which it is time and again contextually collapsed and further cognitively entangled (Aerts et al. in Found Sci 4:115–132, 1999; in Lect Notes Comput Sci 7620:36–47, 2012). The observer–consumer of signs becomes the empowered ‘produmer’ (Floridi in The philosophy of information, Oxford University Press, Oxford, 2011) creating the cognitive outcome of the interaction, while loosing most of any ‘classical givenness’ of the sign (Bal and Bryson in Art Bull 73:174–208, 1991). These quantum-like descriptions are now developed here in four example aesthetic signs; the installation Mist room by Ann Veronica Janssens (2010), the installation Sections of a happy moment by David Claerbout (2010), the photograph The Falling Man by Richard Drew (New York Times, p. 7, September 12, 2001) and the documentary Huicholes. The Last Peyote Guardians by Vilchez and Stefani (2014). Our present work develops further the use of a previously developed quantum model for concept representation in natural language. In our present approach of the aesthetic sign, we extend to individual—idiosyncratic—observer contexts instead of socially shared group contexts, and as such also include multiple idiosyncratic creation of meaning and experience. This irreducible superposition emerges as the core feature of the aesthetic sign and is most critically embedded in the ‘no-interpretation’ interpretation of the documentary signal

    Cultural Evolution as Distributed Computation

    Full text link
    The speed and transformative power of human cultural evolution is evident from the change it has wrought on our planet. This chapter proposes a human computation program aimed at (1) distinguishing algorithmic from non-algorithmic components of cultural evolution, (2) computationally modeling the algorithmic components, and amassing human solutions to the non-algorithmic (generally, creative) components, and (3) combining them to develop human-machine hybrids with previously unforeseen computational power that can be used to solve real problems. Drawing on recent insights into the origins of evolutionary processes from biology and complexity theory, human minds are modeled as self-organizing, interacting, autopoietic networks that evolve through a Lamarckian (non-Darwinian) process of communal exchange. Existing computational models as well as directions for future research are discussed.Comment: 13 pages Gabora, L. (2013). Cultural evolution as distributed human computation. In P. Michelucci (Ed.) Handbook of Human Computation. Berlin: Springe
    corecore