58 research outputs found

    Spatial mixing and approximation algorithms for graphs with bounded connective constant

    Full text link
    The hard core model in statistical physics is a probability distribution on independent sets in a graph in which the weight of any independent set I is proportional to lambda^(|I|), where lambda > 0 is the vertex activity. We show that there is an intimate connection between the connective constant of a graph and the phenomenon of strong spatial mixing (decay of correlations) for the hard core model; specifically, we prove that the hard core model with vertex activity lambda < lambda_c(Delta + 1) exhibits strong spatial mixing on any graph of connective constant Delta, irrespective of its maximum degree, and hence derive an FPTAS for the partition function of the hard core model on such graphs. Here lambda_c(d) := d^d/(d-1)^(d+1) is the critical activity for the uniqueness of the Gibbs measure of the hard core model on the infinite d-ary tree. As an application, we show that the partition function can be efficiently approximated with high probability on graphs drawn from the random graph model G(n,d/n) for all lambda < e/d, even though the maximum degree of such graphs is unbounded with high probability. We also improve upon Weitz's bounds for strong spatial mixing on bounded degree graphs (Weitz, 2006) by providing a computationally simple method which uses known estimates of the connective constant of a lattice to obtain bounds on the vertex activities lambda for which the hard core model on the lattice exhibits strong spatial mixing. Using this framework, we improve upon these bounds for several lattices including the Cartesian lattice in dimensions 3 and higher. Our techniques also allow us to relate the threshold for the uniqueness of the Gibbs measure on a general tree to its branching factor (Lyons, 1989).Comment: 26 pages. In October 2014, this paper was superseded by arxiv:1410.2595. Before that, an extended abstract of this paper appeared in Proc. IEEE Symposium on the Foundations of Computer Science (FOCS), 2013, pp. 300-30

    Three lectures on random proper colorings of Zd\mathbb{Z}^d

    Full text link
    A proper qq-coloring of a graph is an assignment of one of qq colors to each vertex of the graph so that adjacent vertices are colored differently. Sample uniformly among all proper qq-colorings of a large discrete cube in the integer lattice Zd\mathbb{Z}^d. Does the random coloring obtained exhibit any large-scale structure? Does it have fast decay of correlations? We discuss these questions and the way their answers depend on the dimension dd and the number of colors qq. The questions are motivated by statistical physics (anti-ferromagnetic materials, square ice), combinatorics (proper colorings, independent sets) and the study of random Lipschitz functions on a lattice. The discussion introduces a diverse set of tools, useful for this purpose and for other problems, including spatial mixing, entropy and coupling methods, Gibbs measures and their classification and refined contour analysis.Comment: 53 pages, 10 figures; Based on lectures given at the workshop on Random Walks, Random Graphs and Random Media, September 2019, Munich and at the school Lectures on Probability and Stochastic Processes XIV, December 2019, Delh

    Trees of self-avoiding walks

    Full text link
    We consider the biased random walk on a tree constructed from the set of finite self-avoiding walks on a lattice, and use it to construct probability measures on infinite self-avoiding walks. The limit measure (if it exists) obtained when the bias converges to its critical value is conjectured to coincide with the weak limit of the uniform SAW. Along the way, we obtain a criterion for the continuity of the escape probability of a biased random walk on a tree as a function of the bias, and show that the collection of escape probability functions for spherically symmetric trees of bounded degree is stable under uniform convergence

    Annual Report for NERI Proposal No.2000-0109 on Forewarning of Failure in Critical Equipment at Next-Generation Nuclear Power Plants

    Full text link

    Quenched invariance principle for simple random walk on percolation clusters

    Full text link
    We consider the simple random walk on the (unique) infinite cluster of super-critical bond percolation in Zd\Z^d with d2d\ge2. We prove that, for almost every percolation configuration, the path distribution of the walk converges weakly to that of non-degenerate, isotropic Brownian motion. Our analysis is based on the consideration of a harmonic deformation of the infinite cluster on which the random walk becomes a square-integrable martingale. The size of the deformation, expressed by the so called corrector, is estimated by means of ergodicity arguments.Comment: 38 pages (PTRF format) 4 figures. Version to appear in PTR
    corecore