19 research outputs found

    Optimized Nonuniform FFTs and Their Application to Array Factor Computation

    Get PDF
    We deal with developing an optimized approach for implementing nonuniform fast Fourier transform (NUFFT) algorithms under a general and new perspective for 1-D transformations. The computations of nonequispaced results, nonequispaced data, and Type-3 nonuniform discrete Fourier transforms are tackled in a unified way. They exploit “uniformly sampled” exponentials to interpolate the “nonuniformly sampled” ones involved in the nonuniform discrete Fourier transforms (NUFDTs), so as to enable the use of standard fast Fourier transforms, and an optimized window. The computational costs and the memory requirements are analyzed, and their convenient performance is assessed also by comparing them with other approaches in the literature. Numerical results demonstrate that the method is more accurate and does not introduce any additional computational or memory burden. The computation of the window functions amounts to that of a Legendre polynomial expansion, i.e., a simple polynomial evaluation. This is convenient in terms of computational burden and of the proper arrangement of the calculations. A case study of electromagnetic interest has been carried out by applying the developed NUFFTs to the radiation of linear regular or irregular arrays onto a set of regular or irregular spectral points. Guidelines for multidimensional extension of the proposed approach are also presented

    Remote Sensing of Earth Resources (1970 - 1973 supplement): A literature survey with indexes. Section 2: Indexes

    Get PDF
    Documents related to the identification and evaluation by means of sensors in spacecraft and aircraft of vegetation, minerals, and other natural resources, and the techniques and potentialities of surveying and keeping up-to-date inventories of such riches are cited. These documents were announced in the NASA scientific and technical information system between March 1970 and December 1973

    Earth resources: A continuing bibliography with indexes, issue 50

    Get PDF
    This bibliography lists 523 reports, articles and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Coastal-zone oceanographic requirements for earth observatory satellites A and B, part 1 Final report

    Get PDF
    Coastal zone oceanographic requirements for earth observatory satellites - Part

    Aeronautical engineering: A continuing bibliography with indexes (supplement 284)

    Get PDF
    This bibliography lists 974 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1992. The coverage includes documents on design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles

    Research and Technology, 1995

    Get PDF
    This report presents some of the challenging research and technology accomplished at NASA Ames Research Center during FY95. The accomplishments address almost all goals of NASA's four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Sciences, Human Exploration and Development of Space, and Mission to Planet Earth. The report's primary purpose is to inform stakeholders, customers, partners, colleagues, contractors, employees, and the American people in general about the scope and diversity of the research and technology activities. Additionally, the report will enable the reader to know how these goals are being addressed

    Tundra Snow Cover Properties from \u3cem\u3eIn-Situ\u3c/em\u3e Observation and Multi-Scale Passive Microwave Remote Sensing

    Get PDF
    Tundra snow cover is important to monitor as it influences local, regional, and global scale surface water balance, energy fluxes, and ecosystem and permafrost dynamics. Moreover, recent global circulation models (GCM) predict a pronounced shift in high latitude winter precipitation and mean annual air temperature due to the feedback between air temperature and snow extent. At regional and hemispheric scales, the estimation of snow extent, snow depth and, snow water equivalent (SWE) is important because high latitude snow cover both forces and reacts to atmospheric circulation patterns. Moreover, snow cover has implications on soil moisture dynamics, the depth, formation and growth of the permafrost active layer, the vegetation seasonality, and the respiration of C02. In Canada, daily snow depth observations are available from 1955 to present for most meteorological stations. Moreover, despite the abundance and dominance of a northern snow cover, most, if not all, long term snow monitoring sites are located south of 550N. Stations in high latitudes are extremely sparse and coastally biased. In Arctic regions, it can be logistically difficult and very expensive to acquire both spatially and temporally extensive in-situ snow data. Thus, the possibility of using satellite remote sensing to estimate snow cover properties is appealing for research in remote northern regions. Remote sensing techniques have been employed to monitor the snow since the 1960s when the visible light channels were used to map snow extent. Since then, satellite remote sensing has expanded to provide information on snow extent, depth, wetness, and SWE. However, the utility of satellite sensors to provide useful, operational tundra snow cover data depends on sensor parameters and data resolution. Passive microwave data are the only currently operational sources for providing estimates of dry snow extent, SWE and snow depth. Currently, no operational passive microwave algorithms exist for the spatially expansive tundra and high Arctic regions. The heterogeneity of sub-satellite grid tundra snow and terrain are the main limiting factors in using conventional SWE retrieval algorithm techniques. Moreover, there is a lack of in-situ data for algorithm development and testing. The overall objective of this research is to improve operational capabilities for estimating end of winter, pre-melt tundra SWE in a representative tundra study area using satellite passive microwave data. The study area for the project is located in the Daring-Exeter-Yamba portion of the Upper-Coppermine River Basin in the Northwest Territories. The size, orientation and boundaries of the study area were defined based on the satellite EASE grid (25 x 25 km) centroid located closest to the Tundra Ecosystem Research Station operated by the Government of the Northwest Territories. Data were collected during intensive late winter field campaigns in 2004, 2005, 2006, 2007, 2008, and 2009. During each field campaign, snow depth, density and stratigraphy were recorded at sites throughout the study area. During the 2005 and 2008 seasons, multi-scale airborne passive microwave radiometer data were also acquired. During the 2007 season, ground based passive microwave radiometer data were acquired. For each year, temporally coincident AMSR-E satellite Tb were obtained. The spatial distribution of snow depth, density and SWE in the study area is controlled by the interaction of blowing snow with terrain and land cover. Despite the spatial heterogeneity of snow cover, several inter-annual consistencies were identified. Tundra snow density is consistent when considered on a site-by-site basis and among different terrain types. A regional average density of 0.294 g/cm3 was derived from the six years of measurements. When applied to site snow depths, there is little difference in SWE derived from either the site or the regional average density. SWE is more variable from site to site and year to year than density which requires the use of a terrain based Classification to better quantify regional SWE. The variability in SWE was least on lakes and flat tundra, while greater on slopes and plateaus. Despite the variability, the interannual ratios of SWE among different terrain types does not change that much. The variability (CV) in among terrain categories was quite similar. The overall weighted mean CV for the study area was 0.40, which is a useful regional generalization. The terrain and landscape based classification scheme was used to generalize and extrapolate tundra SWE. Deriving a weighted mean SWE based on the spatial proportion of landscape and terrain features was shown as a method for generalizing the regional distribution of tundra SWE. The SWE data from each year were compared to AMSR-E satellite Tb. Within each season and among each of the seasons, there was little difference in 19 GHz Tb. However, there was always a large decrease in 37 GHz Tb from early November through April. The change in ΔTb37-19 throughout each season showed that the Tb at 37 GHz is sensitive to parameters which evolve over a winter season. A principal component analysis (PCA) showed that there are differences in ΔTb37-19 among different EASE grids and that land cover may have an influence on regional Tb. However, the PCA showed little relationship between end of season ΔTb37-19 and lake fraction. A good relationship was found between ΔTb37-19 and in-situ SWE. A quadratic function was fitted to explain 89 percent of the variance in SWE from the ΔTb37-19. The quadratic relationship provides a good fit between the data; however, the nature of the relationship is opposite to the expected linear relationship between ΔTb37-19 and SWE. Airborne Tb data were used to examine how different snow, land cover and terrain properties influence microwave emission. In flat tundra, there was a significant relationship between SWE and high resolution ΔTb37-19. On lakes and slopes, no strong relationships were found between SWE and high resolution ΔTb37-19. Due to the complexity of snow and terrain in high resolution footprints, it was a challenge to isolate a relationship between SWE and Tb. However, as the airborne footprint size increased the amplitude of variability in Tb decrease considerably to the point that Tb in large footprints is not sensitive to local scale variability in SWE. As such, most of the variability evident in the high and mid resolution airborne data will not persist at the EASE grid scale. Despite the many challenges, algorithm development should be possible at the satellite scale. The AMSR-E ΔTb37-19 changes from year to year in response to differences in snow cover properties. However, the multiple years of in-situ snow data remain the most important contribution in linking Tb with SWE

    Aeronautical engineering: A continuing bibliography with indexes (supplement 270)

    Get PDF
    This bibliography lists 600 reports, articles, and other documents introduced into the NASA scientific and technical information system in September, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Earth Resources: A continuing bibliography with indexes, issue 10, August 1976

    Get PDF
    This bibliography lists 506 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1976 and June 1976. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Remote Sensing of Earth Resources: A literature survey with indexes (1970 - 1973 supplement). Section 1: Abstracts

    Get PDF
    Abstracts of reports, articles, and other documents introduced into the NASA scientific and technical information system between March 1970 and December 1973 are presented in the following areas: agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    corecore