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ABSTRACT

Tundra snow cover is important to monitor as it influences local, regional, and

global scale surface water balance, energy fluxes, and ecosystem and permafrost

dynamics. Moreover, recent global circulation models (GCM) predict a pronounced shift in

high latitude winter precipitation and mean annual air temperature due to the feedback

between air temperature and snow extent. At regional and hemispheric scales, the

estimation of snow extent, snow depth and, snow water equivalent (SWE) is important

because high latitude snow cover both forces and reacts to atmospheric circulation

patterns. Moreover, snow cover has implications on soil moisture dynamics, the depth,

formation and growth of the permafrost active layer, the vegetation seasonality, and the

respiration of C02.

In Canada, daily snow depth observations are available from 1955 to present for

most meteorological stations. Moreover, despite the abundance and dominance of a

northern snow cover, most, if not all, long term snow monitoring sites are located south of

550N. Stations in high latitudes are extremely sparse and coastally biased. In Arctic

regions, it can be logistically difficult and very expensive to acquire both spatially and

temporally extensive in-situ snow data. Thus, the possibility of using satellite remote

sensing to estimate snow cover properties is appealing for research in remote northern

regions.

Remote sensing techniques have been employed to monitor the snow since the

1960s when the visible light channels were used to map snow extent. Since then, satellite

remote sensing has expanded to provide information on snow extent, depth, wetness, and

SWE. However, the utility of satellite sensors to provide useful, operational tundra snow

cover data depends on sensor parameters and data resolution. Passive microwave data

are the only currently operational sources for providing estimates of dry snow extent, SWE

¡i



and snow depth. Currently, no operational passive microwave algorithms exist for the

spatially expansive tundra and high Arctic regions. The heterogeneity of sub-satellite grid

tundra snow and terrain are the main limiting factors in using conventional SWE retrieval

algorithm techniques. Moreover, there is a lack of in-situ data for algorithm development

and testing.

The overall objective of this research is to improve operational capabilities for

estimating end of winter, pre-melt tundra SWE in a representative tundra study area using

satellite passive microwave data. The study area for the project is located in the Daring-

Exeter-Yamba portion of the Upper-Coppermine River Basin in the Northwest Territories.

The size, orientation and boundaries of the study area were defined based on the satellite

EASE grid (25 ? 25 km) centroid located closest to the Tundra Ecosystem Research

Station operated by the Government of the Northwest Territories. Data were collected

during intensive late winter field campaigns in 2004, 2005, 2006, 2007, 2008, and 2009.

During each field campaign, snow depth, density and stratigraphy were recorded at sites

throughout the study area. During the 2005 and 2008 seasons, multi-scale airborne

passive microwave radiometer data were also acquired. During the 2007 season, ground

based passive microwave radiometer data were acquired. For each year, temporally

coincident AMSR-E satellite Tb were obtained.

The spatial distribution of snow depth, density and SWE in the study area is

controlled by the interaction of blowing snow with terrain and land cover. Despite the

spatial heterogeneity of snow cover, several inter-annual consistencies were identified.

Tundra snow density is consistent when considered on a site-by-site basis and among

different terrain types. A regional average density of 0.294 g/cm3 was derived from the six
years of measurements. When applied to site snow depths, there is little difference in

SWE derived from either the site or the regional average density. SWE is more variable

from site to site and year to year than density which requires the use of a terrain based
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Classification to better quantify regional SWE. The variability in SWE was least on lakes

and flat tundra, while greater on slopes and plateaus. Despite the variability, the inter-

annual ratios of SWE among different terrain types does not change that much. The

variability (CV) in among terrain categories was quite similar. The overall weighted mean

CV for the study area was 0.40, which is a useful regional generalization. The terrain and

landscape based classification scheme was used to generalize and extrapolate tundra

SWE. Deriving a weighted mean SWE based on the spatial proportion of landscape and

terrain features was shown as a method for generalizing the regional distribution of tundra

SWE.

The SWE data from each year were compared to AMSR-E satellite Tb. Within each

season and among each of the seasons, there was little difference in 19 GHz Tb.

However, there was always a large decrease in 37 GHz Tb from early November through

April. The change in ATb37"19 throughout each season showed that the Tb at 37 GHz is

sensitive to parameters which evolve over a winter season. A principal component

analysis (PCA) showed that there are differences in ATb37"19 among different EASE grids
and that land cover may have an influence on regional Tb. However, the PCA showed little

relationship between end of season ATb37"19 and lake fraction. A good relationship was

found between ATb37"19 and in-situ SWE. A quadratic function was fitted to explain 89

percent of the variance in SWE from the ATb37"19. The quadratic relationship provides a
good fit between the data; however, the nature of the relationship is opposite to the

expected linear relationship between ATb37"19 and SWE.
Airborne Tb data were used to examine how different snow, land cover and terrain

properties influence microwave emission. In flat tundra, there was a significant relationship

between SWE and high resolution ATb37"19. On lakes and slopes, no strong relationships
were found between SWE and high resolution ATb37"19. Due to the complexity of snow and
terrain in high resolution footprints, it was a challenge to isolate a relationship between
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SWE and Tb. However, as the airborne footprint size increased the amplitude of variability

in Tb decrease considerably to the point that Tb in large footprints is not sensitive to local

scale variability in SWE. As such, most of the variability evident in the high and mid

resolution airborne data will not persist at the EASE grid scale.

Despite the many challenges, algorithm development should be possible at the

satellite scale. The AMSR-E ATb37"19 changes from year to year in response to differences

in snow cover properties. However, the multiple years of in-situ snow data remain the most

important contribution in linking Tb with SWE.
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CHAPTER 1: INTRODUCTION

1.1. Introduction

Terrestrial snow covers nearly 50 million square kilometers of the Northern

Hemisphere each winter (IGOS, 2007). Seasonal snow cover directly affects many

aspects of our infrastructure, economy and livelihood. Snow is often viewed as a burden;

however, springtime snowmelt provides much needed runoff for agriculture, potable

water supply and hydroelectric generation. Furthermore, snow is an essential

cryospheric element to understand and monitor as it also has several direct effects on

fundamental Earth systems. The high albedo of snow cover reflects incoming solar

radiation and perpetuates lower surface temperatures. Moreover, snow is also a good

insulator which reduces the depth and extent of ground frost as well as reducing the net

heat exchange between ground and the atmosphere. These physical changes affect the

atmosphere at its lower boundary, and snow cover is recognized as an important factor

which influences the climate on local, regional and global scales (Berry,1981).

Furthermore, the spatial and temporal distribution of snow extent and depth are primary

controls on ecosystem carbon exchange. Moreover, recent research suggests that late

winter snow depth and spring-thaw timing strongly affect the annual cycling of carbon

and nutrients along with other important biogeochemical processes in the Arctic (Larsen

et al., 2007). Winter snowfall can comprise a large part of the total annual precipitation,

especially in high latitude regions, and the subsequent snowmelt runoff can be the

principal component in the annual water balance (Woo, 1998). Likewise, the spatial

distribution of snowmelt is important to the ecosystem as it controls the soil moisture

dynamics, the depth, formation and growth of the permafrost active layer, and the nature

of vegetation productivity (Stow et al., 2004).
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The accuracy and dependability of models to predict future changes in climate
and snow cover are dependant on their ability to reconstruct past and present conditions

(McGinnis and Crane, 1994). However, modeling snow distribution and regional climate
for northern latitudes is not a simple task. The primary limitation is that many tundra

snow cover data sets are spatially constrained and/or temporally discontinuous (Derksen

et. al., 2000). In Canada, daily snow depth observations are available from 1915 to

present for selected stations and from 1955 to present for most stations. However, these
stations are mostly concentrated in or near populated areas and are only point

estimates. Moreover, most, if not all, long term snow monitoring sites are located south

of 55° N, despite the abundance and dominance of a northern snow cover (Brown, 1997)
(Figure 1.1).
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Figure 1.1. Canadian daily snow depth network available for analysis
(modified from Brown et al., 2003)

In Arctic regions, it can be logistically difficult and very expensive to acquire

spatially extensive in-situ snow data with enough re-visits to compile a useful dataset.
Furthermore, deploying and maintaining meteorological stations capable of providing

reliable snow data is also difficult and costly. Thus, the possibility of using satellite
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remote sensing to estimate snow cover properties is appealing for research in remote

northern regions.

1 .2. Research Objectives
Given the linkage of tundra snow to many physical systems, the spatial and

temporal discontinuity of current data sets, and the lack of operational snow cover

monitoring protocol, there is a need for developing an intensive tundra snow cover data

set for

1) the improvement, development and validation of large scale satellite remote

sensing algorithms,

2) the extrapolation to large scale process models, and

3) the definition of features that cannot currently be easily remotely sensed or

modeled (such as snow density and snow on sub-grid scale landscape features).

Snow cover parameters of interest are the spatial and temporal distribution of 1)

snow extent, 2) snow depth, and 3) SWE. Snow extent is required for climate,

hydrological and ecological research as it defines the percentage of land surface

occupied and influenced by a snow cover, required for quantifying land surface albedo

and subsequent radiation balance. Snow depth information is an important parameter for

studying energy balance, carbon cycling and ecosystem dynamics, while SWE,

calculated from snow depth and density, is important for estimating snowmelt runoff,

evaluating climate models, and the detection of trends related to snow mass. The

seasonal evolution of the snowpack is important; however, estimates of pre-melt tundra

snow depth and SWE are most useful for both local and regional scale modeling.

Through the review of current snow data acquisition tools in Section 1 .3, it is clear that

passive microwave sensors provide one of the best opportunities for providing spatially

and temporally comprehensive high latitude snow cover data. These sensors have the

advantage of being remotely collected with a daily frequency, extremely cost effective,
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and ¡mmune to atmospheric conditions (cloud cover). Furthermore, a long time series of

archived data is available (1978 to present).

The overall objective of this research is to improve operational capabilities for

estimating end of winter, pre-melt tundra SWE in a representative study area using

satellite passive microwave data. In order to meet this objective a series of steps will be
undertaken and detailed in the remaining chapters. They include:

1 ) outlining the importance of tundra snow and sources of snow cover data

(Chapter 1),

2) reviewing the literature and determining theoretical limitations of passive

microwave remote sensing for monitoring tundra snow cover (Chapter 2),

3) selecting a representative study area (Chapter 3),

4) obtaining in-situ tundra snow cover data sets through multiple years of field

surveys (Chapter 3),

5) analyzing in-situ data so that a better understanding of the distribution and

properties of tundra snow can be achieved (Chapter 4),

6) evaluating the performance of current passive microwave algorithms for

estimating tundra snow (Chapter 5),

7) determining the steps necessary to resolve uncertainty in current methods

(Chapter 6),

8) summarizing the feasibility of using passive microwave remote sensing to

estimate tundra snow cover properties (Chapter 7).

1 .3. The Importance of Tundra Snow Cover
1.3.1. Introduction

Tundra environments comprise 7.2 ? 106 km2 or 4.8 % of the entire land surface
of the Earth and are characterized by low mean annual temperatures, the absence of a

continuous forest cover, long dark winters, continuous permafrost soil, and persistent



snow cover (Ohmura, 2000). Tundra snow cover is an extremely important parameter to

understand and monitor as it influences local, regional and global scale surface water

balance, atmospheric dynamics, weather and climate patterns, surface energy and

biogeochemical fluxes, along with ecosystem and permafrost dynamics (Table 1 .1).

Table 1.1. The importance of tundra snow cover to natural systems

Regional
and Global
Climate
Carbon
Balance

Hydrologie
System

Permafrost
and Active
Layer
Plants and
Animals

Importance of Snow Cover
Snow cover properties control surface
thermodynamics and affect atmospheric
feedbacks
Timing of melt and accumulation along with
mid-winter snow depth influences
vegetation respiration and balance between
carbon sources and sinks
Snow water equivalent determines potential
volume of spring runoff. Timing and
duration of melt are important to overall
water balance and surface water chemistrywater paiance ana sunace water cnemisi

Snow depth and snow melt timing affect
ground thermal regime and active layer
formation
Snow depth insulates vegetation and
determines access to food sources. Timing
of snowmelt determines nutrient cycles and
vegetation dynamics

Scale
Regional to
Global

Regional to
Global

Local to
Regional

Regional to
Hemispheric

Micro to
Regional

1 .3.2. Regional and Global Climate

The climate of the Arctic is characterized by extremes: very cold winter

temperatures, highly skewed annual cycle of solar radiation input, dominance of snow

cover, and relatively low rates of precipitation, all of which result from its geographic

position (Hinzman et al., 2005). Atmospheric dynamics are controlled in part by changes

in lower boundaries. As such, snow cover is recognized as a key factor in influencing

local, regional and global climates (Berry M. O. 1981 , in Gray and Male). Therefore, the

spatial and temporal distribution of tundra snow is a key factor in determining the nature

of winter climate. Snow has many unique surface properties which influence the surface

energy balance. These include 1) a large latent heat of vaporization and fusion
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compared to water, 2) a low thermal conductivity, 3) a high albedo compared to soil and
vegetation, and 4) a lower surface roughness compared to most land surfaces (Pomeroy
and Goodison, 1997). The large scale high albedo surface of seasonal snow, prevalent

for several months, significantly influences global circulation patterns. Based on the

parameters discussed, Figure 1 .2 demonstrates how the energy balance of a snow free
soil surface can be compared with that of snow covered land.

??.^^??\ Absorbed or Reflected
^V-7^\ by Clouds and Atmosphere

Sensible and Latent
Heat Fluxes

outgoing
longwave

outgoing
longwave t

latent heat of

SOILsnow melt SNOW

Insulation
Absorbed Absorbed

Conduction

Figure 1.2. The comparison in shortwave energy reflection
between a snow surface and bare soil

In Figure 1 .2, the incoming and outgoing energy are largely balanced over bare

soil; however, there is a large energy deficit produced over the snow covered surface

(Cohen, 1994). This deficit exists during winter over large high latitude land areas, which
results in significantly lower surface air temperatures. Cold northern snow covered

regions act as a source for continental polar air masses which migrate into mid-latitude
regions under large-scale circulation (Berry, 1981). These air masses are associated
with cold surface temperatures. Snow cover has a large influence on the amount

incoming energy lost to the atmosphere. As such, the onset of snow accumulation, the

snow depth throughout the winter, the frequency of subsequent snowfall events and the

timing of snow melt are key parameters which control snow-climate feedbacks.
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The onset of snow accumulation is important as the introduction of even a thin

snow cover dramatically increases surface albedo. Newly fallen snow can change the

albedo of a surface from 0.25 to above 0.80 in a matter of a few hours (Oke, 1990).

However, as a snow pack ages during the winter, the surface albedo drops from around

0.85 for new snow to around 0.70 after 5 days. In mid-latitudes, the albedo can fall to

around 0.6 after 20 days due to the accumulation of dirt and debris (Dunne and Leopold,

1978).

As snow depth increases, the thermal gradient from the ground to the

atmosphere decreases and the ground surface becomes increasingly insulated and

isolated from the atmosphere (Cohen, 1994). Furthermore, as snow depth increases in

the tundra, shrub and grass vegetation, which typically range from 0.15 to 1.0 m high,

become increasingly covered in snow. Covering protruding vegetation lowers their ability

to absorb solar radiation and to provide a boundary heat layer source (Strack et al.,

2004). Covering the vegetation completely with snow decreases surface roughness and

acts to smooth the land surface.

Before the onset of snow melt the regional climate differences across the tundra

are small due to a relatively homogenous layer of snow. However, snow melt is

important to climate feedbacks as during the relatively short melt period, the surface

albedo can drop from around 0.8 to 0.1 (Ohmura, 2000). As such, the timing of melt

onset is as important as is the depth of snow, which partly determines the length of time

required to melt the snow pack. At regional and hemispheric scales, the accurate

estimation of tundra snow melt extent and duration are important because high latitude

snow cover both forces and reacts to atmospheric circulation patterns (Bamzai, 2003,

Gong et al., 2003). Furthermore, observations by Ge and Gong (2008) suggest that

snow depth, along with the spatial patterns of snow melt may play an important role on

potential spring and summer climate.
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1 .3.3. Carbon Balance

The carbon balance in the tundra ¡s the difference between carbon storage in soils and

plants and carbon losses from subsequent decomposition. In high latitude climates, this

decomposition is slow and carbon accumulates in the form of thick layers of organic

matter (Loya and Grogan, 2004). The net carbon storage in tundra, combined with

boreal forests, amounts to an estimated one-third of the global soil carbon sink (Post et

al., 1982). As such, snow dominated tundra and boreal landscapes have an important

role in the global budgets of atmospheric carbon dioxide (CO2) and methane (CH4)

(Bonan et al., 1995). Thus, the timing of snow accumulation and snow melt and the

spatial extent of snow cover have obvious implications forn vegetation seasonality and

productivity, and in turn, tundra carbon balance. Recent research has further

demonstrated that in arctic ecosystems, once considered dormant during winter,

production of CO2 under snow cover accounts for a significant portion of the annual

carbon budget (Brooks et al., 1997, Fahnestock, 1998, Grogan and Jonasson, 2006,

Elberling, 2007).

Experiments conducted in tundra ecosystems demonstrate that snow depth has

an influence on the extent of C02 production. Schimel et al. (2004) show how snow

depth increased by a factor of 6 resulted in enhanced respiration and soil nitrogen

cycling due to warmer mean winter soil temperatures and reduced temperature

fluctuations. Nobrega and Grogan (2007) show how a moderate increase (0.3 m to 1 m)

in snow depth affects the total wintertime respiration in the Canadian arctic tundra. The

results of the study indicate that under normal snow and summer growing conditions

there is an annual net gain in carbon. However, with a moderate increase in snow depth,

especially if this prolongs snow melt and delays the growing season, such a tundra

environment could switch to being a net source of carbon. Deeper snow also reduces

the number of soil freeze-thaw cycles, which can 1) result in high initial pulses of CO2
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production if they involve severe temperature drops, or 2) have little effect on respiration

if the temperature fluctuation is minimal. The conclusions of such research suggest that

snow depth and snow melt timing are very important in determining biochemical

processes and carbon cycling in tundra environments.

1 .3.4. Hydrologie System

Seasonal snow cover is present on the tundra for up to 8 months of the year, and

snowfall comprises over 50 percent of the total annual precipitation input to high latitude

regions (Woo, 1998). Snow-melt water constitutes over 80 percent of the total annual

runoff. Accurate estimates of runoff are important in order to quantify the potential melt

water available to terrestrial and aquatic systems, for potential water supplies, for flood

control, and for hydroelectric power generation.

Local scale snowmelt and runoff processes can occur rapidly over a relatively

short period of time and can be difficult to capture and gauge. In the absence of gauge

data, snowmelt runoff simulations are used. These models generally consist of a

snowmelt energy model that generates melt water from a given snow cover and a

hydrologie routing model that moves available melt water to the basin outlet (Pohl et al.,

2005). The key input snow cover parameters in both local and regional models are pre-

melt snow water equivalent (SWE) and the spatial extent of snow cover (Woo et. al.

1999).

1 .3.5. Permafrost and Active Layer Formation

Permafrost soils are prevalent throughout tundra landscapes. The depth and

extent of snow have a large control on the wintertime ground thermal regime. Snow-

ground interface temperatures can vary significantly within a few hundred metres due to

differences in snow thickness (Mackay and Mackay, 1975). The impacts of changes in

snow accumulation, extent, melt timing and duration, density, and structure on the

ground thermal regime, active layer formation and permafrost have been well
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documented (Zhang, 2005, Ling and Zhang, 2007). Furthermore, Hinkel et al. (2006)

show how deep drifts generated by the installation of snow fences in Barrow Alaska can

strongly modulate ground thermal regimes and raise soil temperature from 2 to 14

degrees Celcius. In addition, these deeper snow drifts persist longer in the spring, which

delays soil thaw and active layer formation and limits summer time soil warming.
1 .3.6. Plants and Animals

Snow cover is one of the most important variables that control biological activity in

arctic ecosystems (Walker et al., 1999). The spatial distribution of snow, as well as the

temporal onset of snow accumulation and melt, has an influence on the distribution of
plant species, communities, and animal activity (Eugster et al. 2000). A good example of

the feedback between snow and vegetation is found in areas where deep snow drifts form.

Snow accumulates in depressions, on lee slopes, or in areas of dense vegetation. Plants

tend to preferentially occupy such sheltered areas which further enhances the entrapment

of drifting snow. During winter, deeper snow provides insulation to the plants, restricting

energy loss and reducing desiccation (McKay and Adams, 1981). Deep snow drifts tend to

melt more slowly than the thinner snow on the surrounding landscape. The delay in melt

slows the warming of the soil and can limit plant growth; however, the slow release of melt

water well into the growing season provides beneficial moisture which improves plant

productivity. This is one of the main reasons that the spatial distribution of snow during the

winter has been highly correlated to summertime vegetation distribution (Bruland et al.,

2004). As a whole, the depth of snow in the tundra has been shown to affect species

composition, primary production, and biogeochemical cycles (Brooks et al., 1997). More

specifically, increased snow depth has been shown to have a large effect on the temporal

shift of plant floristics, and patterns of nitrogen cycling (Borner, et al., 2008). The spatial

distribution and timing of snowmelt are also important and control 1) soil moisture

dynamics, 2) the nature of vegetation productivity, and 3) vegetation phenology as both
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the nitrogen availability and carbon-nitrogen ratio are strongly dependant on the number of

snow free days (Stow et al., 2004, ).

The dynamics of seasonal snow cover also influence the mobility of animals and

affect their ability to find adequate shelter and food supplies. Small mammals which

occupy the subsurface environment of a snow pack are very sensitive to changes in snow

depth and density. They require sufficient depth for insulation, shelter and protection from

the weather and predators. Certain species of rodents are quite active in winter due to the

benefits of a snow cover. However, if the density becomes too high, it can make it more

difficult to forage for food and increase travel on the surface which would increase

potential expose to predators (McKay and Adams, 1981). Species which do not live below

the surface of the snow are also greatly influenced by snow cover properties. The depth

and density also determine the ease with which many species, especially migratory

ungulates, move around, forage for food, and evade predators. An extreme example is the

development of ice layers in the snow pack from severe wintertime rain-on-snow events.

Such ice layers can act as a barrier to ungulate grazing and are linked to large-scale

ungulate herd declines via starvation and reduced calf production rates (Grenfell and
Putkonen, 2008). The timing of snowmelt is also important as the associated flush of

spring growth has a definite influence the grazing patterns of reindeer and woodland

caribou, and the feeding of arctic-breeding geese (Van der WaI et al., 2000).

1 .3.7. Potential Environmental Change

The dominance of snow and ice makes tundra ecosystems very sensitive to potential

environmental change. Recent global circulation models (GCM) predict a significant

increase in both winter precipitation and mean annual air temperature (ACIA, 2004 and

IPCC, 2007). More pronounced warming is forecast for high latitude regions due to the

feedback between air temperature, snow and ice extent, and surface albedo (Lynch et al.,

1995). As a corollary, considerable change to the spatial and temporal distribution of snow
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cover and vegetation ¡s expected due to the feedback between temperature, precipitation,

snow and vegetation. Environmental change is also possible from increasing human activity

in the tundra. Over the past decade, there has been a large increase in mineral exploration,

mining operations and construction in the tundra. The regional impact of these operations on

local and regional snow cover dynamics needs to be considered.

1.3.7.1. Temperature and Precipitation

From the data that are available, the climate of the Arctic appears to have

warmed substantially since the end of the Little Ice Age. From the mid-1 800s to mid-20th

century, the Arctic has warmed to the highest temperatures seen in 400 years (Overpeck

et al., 1997).The high sensitivity of snow to fluctuations in temperature and precipitation

makes it a key indicator year to year variability. As such, snow is often used to test

climate change hypotheses concerning the redistribution and acceleration of the

hydrologie cycle (IGOS, 2007). Tundra warming is projected to be greatest in late

autumn and winter. Increased winter precipitation is associated with the retreat of snow

cover and sea ice (Serreze et al., 2000).

During winter snow cover dominates the terrestrial landscape and unfrozen surface

water is rare. As such, a negative annual radiation balance is established and more

radiation is lost to space as heat than comes in through solar heating (Hinzman et al., 2005).

Several studies have observed a reduction in seasonal high latitude snow extent in recent

decades (Brown, 2000, Dye, 2002). The reduction in snow extent is important as it changes

the radiation balance through changes in the feedback between snow and bare ground (Qu

and Hall, 2006). As snow extent decreases, more energy is absorbed and transferred to the

atmosphere which results in increased melt and a positive albedo feedback (Groisman et

al., 1994). Through this positive feedback mechanism, changes in snow cover, along with

sea ice extent, are expected to contribute to and amplify climate warming (Serreze et al.,

2000).
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Earlier than normal snowmelt onset, which is forecast for high latitude regions, can

further influence the feedback mechanisms between atmospheric circulation and hydrologie

processes. The snow melt increases the moisture content of the soil which lowers ground

surface albedo and increases the absorption of solar energy. This increases soil

temperature, and thus surface evaporation which can be the precursor to drier than normal

conditions during summer months. Earlier snowmelt has a much greater impact on the
albedo feedback than later snow accumulation in the fall as solar input is much closer to the

annual maximum in the spring. A later than normal snow melt period would act in the

opposite way, promoting cooler and wetter conditions long after the snow has melted

(Cohen, 1994). An increase in the length of the snow-free period or in summer air

temperature would also enhance évapotranspiration rates. Unless balanced by an increase

in rainfall, the summer water balances for much of the tundra would become increasingly

negative which would reduce lake levels and ground water recharge (Rouse et al., 1992).

Evidence suggests that changes in high latitude temperature, precipitation and snow

cover may already be occurring. However, quantifying this change is complicated by the

high variability of snow cover throughout a large range of spatial and temporal scales

(IGOS, 2007). As such, appropriate snow cover data that can define and generalize variable

snow covered landscapes are necessary in order to validate models which predict future

conditions.

1.3.7.2. Snow Vegetation Feedbacks

The spatial, temporal and functional response of tundra vegetation to changes in

snow cover could further influence global climate through direct impacts on radiation and

energy balances (Bonan et al., 1995). Both modeling and observational studies have

provided evidence of changes to arctic vegetation distribution under increasing air

temperatures (Chapin et al., 2005). Most models would agree that warming temperatures

would produce a northward expansion of the boreal forest. Observations of Alaskan tundra
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show that in the last 50 years, there have been significant in-filling of previously sparse

shrub growth, expansion of shrubs into previously shrub-free areas and increasing extent

and density of spruce forests at treeline (Sturm et al., 2001a).

In the tundra, shrubs have been shown to modify the distribution, depth and

properties of the snow pack. In areas where shrubs are more abundant, there is a greater

accumulation of drifted snow, and less snow is lost throughout the winter due to sublimation

(Sturm et al., 2001b). Model simulations by Liston et al. (2002) in a tundra basin suggest

that enhancing shrub abundance in the domain increased depth by 14%, decreased blowing

snow sublimation fluxes by 68%, and increased snow cover thermal resistance by 15%.

Furthermore, using blowing snow models and observed data, Pomeroy et al. (1997) show

that shrub tundra areas accumulate four to five times more snow than areas of barren

tundra. The greater snow depth in shrub areas influences the timing and magnitude of snow

melt. Early in the melt season, the deep snow over buried shrubs maintains a higher albedo

(Sturm el al., 2001b). However, as the snow melts and vegetation becomes exposed,

snowmelt rates under shrub canopies are generally enhanced in comparison with sparsely

vegetated tundra (Pomeroy et al., 2006).

The presence of shrubs also enhances sensible heating and évapotranspiration

during the snow free period. As such, an expansion of shrubs would result in the positive

feedback of air temperature which would augment warming at local to regional scales. The

magnitude of vegetation, snow, energy balance feedbacks on potential high-latitude

warming is much greater than previously thought (Beringer et al., 2005). For example, a

comparison between snow cover and vegetation distribution by Buus-Hinkler et al. (2006)

revealed that tundra vegetative vigor in Zackenberg Greenland is primarily controlled by the

initiation of the snow-free period rather than air temperature. This is important as it indicates

that in such arctic regions an increase in snowfall and snow depth may extend the winter
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season and have a greater impact on the ecosystem than projected GCM increases in air

temperature or may also act to mitigate the impact of increases in air temperature.

1.3.7. 3. Human Development

Large scale human development in high latitude landscapes has typically been

focused on resource extraction. Several different mines have operated in the Canadian

North since the early 1930s. The discovery of diamonds in the Canadian tundra in the

early 1990s sparked a flurry of exploration and, within the last decade, mine

development. With three open pit diamond mines currently in operation and much more

exploration being done at claim sites throughout the tundra, diamond mining has the

potential to have a marked impact on the landscape. Furthermore, there are currently

proposals for all-weather road construction spanning from the boreal forests in

Yellowknife NWT across the tundra to the Arctic coast at Bathurst Inlet. The impacts of

related mineral exploration, mine construction, mining operations, and decommissioning

on the landscape are wide ranging and depend largely on the type of mineral being

extracted and scale of the operation. Most commonly, the effects of mining on the

landscape are most visible surrounding a mine and at a local scale. In an ecosystem

considered sensitive to change, the environmental impact of the recent development

associated with diamond mining needs to be assessed. Open pit mining has the

potential to have a larger environmental impact due to the scale of operations and the

amount of dust and rock blasting by-products released into the air. Ammonium nitrate

contamination has already been detected in the vicinity of the Ekati Mine near Lac de

Gras NWT.

The impact of northern mining operations on vegetation, soil and wildlife has

been investigated by many researchers. Airborne dust produced from the Ekati mine and
haul roads has been identified as having adverse local effects on vegetation species

composition and plant communities (Male and NoI, 2005). However, airborne dust also
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has the potential to impact more regional snow melt dynamics. Modeled results by Drake

(1981) show how a thin layer of dust on a snow pack can lower surface albedo such that

snow melt can be significantly accelerated. These findings are in agreement with
observations at Schefferville, Quebec, where snow near active mine sites was observed

to be melting up to four days earlier than on the surrounding landscape (Drake, 1981).

The extent of dust deposition from active diamond mines and its effect on snow melt has

not yet been quantified. However, given the feedbacks between snow melt rates and

ecosystem, hydrologie cycle, and permafrost dynamics, dust deposition remains a

serious concern, especially as development continues to increase.

1 .3.8. Tundra Snow Parameters

The previous section demonstrates the wide range of multi-disciplinary

applications for seasonal snow cover data. Several spatial and temporal snow cover

parameters have been identified and are summarized in Table 1 .2.

Table 1.2. Application of snow cover parameters

Application Spatial Snow Parameters Temporal Snow Parameters
Regional and
Global Climate

Snow Extent
Snow Depth
Snow Surface Albedo

- Snow Accumulation
- Snow Melt

Carbon
Balance

Snow Extent
Snow Depth

Snow Accumulation
Snow Melt

Hydrologie
System

Snow Extent

SnowWater Equivalent (SWE)
Snow Accumulation
Snow Melt

Permafrost and

Active Layer
Snow Extent
Snow Water Equivalent (SWE)

Snow Accumulation
Snow Melt

Plants and
Animals

Snow Extent

Snow Depth
SnowWater Equivalent (SWE)
Snow Density and Stratigraphy

Snow Accumulation
Mid-winter melt or rain events
Snow Melt

The onset of snow accumulation, the extent of a snow cover, the depth of snow

and the timing of snow melt are the most broadly applicable snow data. However, SWE

is the most important factor for hydrological models which determine potential melt water
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available to vegetation in the spring, and in validating GCM snow mass outputs. Snow

density, surface albedo, along with observations of mid-winter melt and rain-on-snow
events, are used in addressing specific research problems, however, they are not as

widely applicable.

1 .4. Tundra Snow Data

1.4.1. Introduction

Tundra snow cover is a difficult parameter to quantify. Snow accumulation

patterns are controlled by differences in regional precipitation and topography, by

vegetation distribution and by significant wind redistribution. Furthermore, the rugged
terrain and the remoteness of tundra regions make it logistically very difficult to observe

regional snow cover parameters with any consistency. However, where they exist,

tundra snow cover data are a perfect diagnostic tool for initializing, testing and validating

the performance of many different physical models (Barry, 1997). They are also highly

sought after for application in many cross-discipline research projects (Table 1). There

are several ways in which tundra snow cover data have been and are currently being
obtained. The data are

1) Measured from in-situ surveys,

2) Derived directly from local weather station data,

3) Modeled to form distributed data and/or extrapolated from point data, and

4) Estimated from remote sensing data.

Each method has its advantages and disadvantages, and the utility of the data is

based largely on the required spatial and temporal resolution.

1 .4.2. Manual In-situ Snow Data

Manual in-situ measurement of snow depth involves the use of graduated in-

ground stakes or the insertion of a ruler or probe into the snow pack. Such data are

usually considered to be the most accurate; however, data acquisition requires rigorous
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field work, and the data are not guaranteed to be accurate. Error can be accrued using

either the stakes or through the manual insertion of rulers and probes. Recording snow

depth from fixed stakes requires frequent visits. This is labor intensive and can be

problematic during melt when increased traffic changes the snow surface roughness
which can accelerate melt. Moreover, snow stakes are spatially constrained, and as

such, site selection is important to ensure they are representative of snow cover in a

given landscape. Manual snow probe measurements are also labor intensive and

usually spatially constrained to easily accessed sites or snow courses. Probe data can

misrepresent true snow depth due to ice lenses or very dense snow. In an effort to

determine the true base of a snow pack, the probe or ruler may be inserted with too

much force causing it to penetrate into the underlying ground vegetation or soil which

can introduce an overestimation of snow depth. This is especially problematic in tundra

environments as the upper layer of ground vegetation can be thick (usually moss or

lichen) and easily penetrated by a snow depth measuring device.

In-situ snow density is typically measured using a calibrated snow tube. The tube

is inserted into the snow pack, the depth is recorded, and the sample from within the

tube is then weighed in order to calculate density. However, in some snow conditions, it

can be difficult to retain a snow sample in the tube. This is especially prevalent in areas

of thin snow cover and where there is significant depth hoar at the base of the pack. The

inability to retain samples leads to a systematic underestimation of snow density. Snow

tube instrument error varies depending on the type of sampler, but ranges between 0

and 10 % mean density error (Goodison et al. ,1981). Snow water equivalent is

calculated by multiplying depth times density; therefore, it is important to minimize error

in both measures.

In-situ measurements, while often the most reliable, are usually confined to small

research basins (Woo and Marsh, 1978, Pomeroy et al., 1997, Hirashima, et al., 2004,
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Woo and Young, 2004) or are obtained along a defined transect (Sturm and Liston,

2003) or though an annual snow course (Pulliainen, 2006). While all of these data sets

have proven to be very useful in defining tundra snow cover characteristics, they are not

always sufficiently spatially extensive for direct validation of large scale model results or

for algorithm development over large basins and coarse grid resolutions. Furthermore, in

the tundra snow depth is quite variable even at the site scale. As such, it can be difficult

to assess or quantify variability when using point data.

1 .4.3. Automated Station Snow Data

Due to the difficulty in collecting large scale distributed in-situ snow data, few

operational in-situ survey sites currently exist in Canada, and the network has been

gradually eroding over the past twenty five years (Neumann et al., 2006). The lack of in-

situ data has increased the reliance on snowfall and snow depth data collected from

automated meteorological stations. Snowfall is defined as the depth of fresh snow which

lands on the ground during a given period, while snow depth refers to the amount of

snow on the ground at the time of observation (Goodison et al., 1981). Snowfall is

captured in a gauge similar to liquid precipitation; however, these gauges are known to

produce systematic error caused 1 ) by loss through evaporation from within the gauge,

2) by the inability to record trace snowfall events (<0.2 mm), and 3) by undercatch during

windy conditions (Woo, 1998).

Snow depth is measured using automated sonic ranging snow depth instruments

fixed to meteorological stations. Sonic depth sensors emit a downward pulse which can

calculate the distance between the sensor and the surface of the snow pack (Gubler,

1981). Errors in measurement can occur during falling and blowing snow events;

however, these data can be quality controlled by using hourly trends and snowfall

precipitation data when available (Goodison et al., 1988). Sonic sensors, however, do

not disturb the snowpack and the snow depth recorded is a spatial average over a
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circular area, which may range from 0.2 to 2 m in diameter depending on the height of

the instrument. This spatial averaging can compensate for microscale snow surface

heterogeneities which are difficult to avoid with typical point measurements (Pomeroy

and Gray, 1995).

Snow gauges can provide a long time series of daily snowfall and snow cover

information (Brown and Goodison, 1996). However, they can be labor intensive to set up

and maintain, as well as costly to purchase and service in remote locations.

Furthermore, given that they are posted in a fixed location, the data are even more

spatially constrained than in an in-situ survey, remain subject to potential errors, and are

not able to quantify the spatial variability in snow depth. Corrections can be applied to

overcome systematic gauge error; however, sparse gauge networks, especially in high

latitude regions, limit the applicability of the data to large scale modeling (Derksen and

LeDrew, 2000).

1 .4.4. Canadian Snow Database

Daily snow depth measurements are available from observing stations in the

Canadian Arctic from the 1950s and from climate stations from the early 1980s. The

current network of data observations is sparse north of 55 degrees and especially

sparse in the tundra where sites are biased towards coastal settlements.

The snow depth and SWE data that have been collected are available through

the Canadian Daily Snow Depth Database which has been updated to the end of the

2007 snow season (www.ccin.ca). The data contain SWE and snow depth

measurements from snow surveys taken by more than twenty agencies at weekly,

biweekly or monthly frequencies. The data were subject to rigorous quality procedures

following Robinson, 1989, and missing values were filled using a calibrated snow

accumulation and melt method driven with daily temperature and snowfall data (Brown

and Braaten 1998). The resulting data, mostly reconstructed values prior to 1940 and
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predominantly observed values after 1950, with a pronounced peak in the 1976-1985

decade, have been compiled as part of the Canadian National Climate Data Archive.

After 1985, the closure of many snow courses combined with the erosion of contacts

between the Meteorological Service of Canada and other data collection agencies

resulted in a steep decline in the amount of data. However, in the early 1980s, there

were over 1700 snow course observations per year in Canada that were compiled in the

database (Meteorological Service of Canada, 2000). Brown (2000) identifies a total of

154 stations with more or less complete data coverage from a 1915-93 study period.

However, these observations are mainly located in southern Canada south of 550N, and

some of these stations did operate from 1993 to present. The lack of a long time series

of high latitude snow cover observations restricts the reconstruction of North American

snow cover trends to months when the snow extent dips south of this data limit and

severely impacts linkages to large scale circulation models (Brown, 2000).

1 .4.5. Modeled Snow Data

The application of snow cover data can be difficult when incompatibilities exist

between the scale of the observations and the resolution of computed or modeled

outputs. In-situ and gauge measured snow data can be especially problematic as they

are collected at one specific site and recorded as point data. Comparing point data from

one area to the next and from year to year can be difficult as different sampling

personnel, field protocols and/or instruments are often used. As such, most snow cover

measurements and long term databases can be prone to inaccuracies stemming from

differences in instrumentation, biases in measurement techniques, and the reduction or

relocation of gauges or meteorological stations (Bloschl, 1999).

In the absence of spatially extensive observations, models can be applied to

extrapolate in-situ or gauge measured snow cover parameters over larger areas. Scaling

of snow cover data is becoming increasingly important as there is a need for applying
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physically based snow cover parameters in evaluating regional and global circulation

models (RCM and GCM) and to basin scale hydrological models (Luce et al., 1999,

Bowling et al., 2004). Two main methods have been used to represent point data over

larger model grid cells. The first involves using statistical methods to extrapolate point

data over larger areas. The second method involves the development of process models

which incorporate point snowfall and point meteorological data in order to estimate snow

distribution patterns over larger areas.

The evaluation of GCM snow cover simulations is typically limited by a lack of

spatially extensive and reliable data. Brasnett (1999) developed a method to provide

global, real-time analysis of snow depth data. The method uses observations of snow

depth from the synoptic observing network and snowfall estimated from numerical

weather prediction (NWP) models. The observed data are incorporated using a method

of statistical interpolation called optimum interpolation. The method first involves

developing a background field which is interpolated horizontally to observed locations

using a bilinear interpolation. The method, described in detail by Brasnett (1999) blends

the information from the background with the observed. Corrections to the background

are computed at each grid point using a weighted sum equation. The method developed

produced realistic snow depth estimates, even in regions with a lower density of

observations. However, snow depth estimates were sometimes biased or

unrepresentative due to their location in urban areas, in valleys or along coasts. Brown

et al. (2003) use the method developed by Brasnett (1999) in order to generate a 0.3°

latitude/longitude grid of monthly mean snow depth and corresponding estimated SWE

over North America for the evaluation of GCM snow cover products. Modeled historical

snow depth data were in good agreement with independent in-situ and satellite

observations, and the new gridded dataset was able to capture continental scale

variations in SWE and snow extent. Furthermore, the snow depth climatology produced
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by Brown et al. (2003) provides an improved continental dataset over the previously

accepted Foster and Davy (1988) product, with a notable improvement in early and late

season snow line delineation. The data set successfully captured interannual variability

in snow extent in SWE during the November - April period, however, it was less

successful during the May - October period as the snowline was located over data

sparse northern regions.

The paucity of high latitude station data available to Dyer and Mote (2006) for

developing trends in observed snow depth, further illustrates how the lack of data across

the vast Canadian North severely impacts the accuracy and reliability of continental

scale gridded snow depth datasets. Dyer and Mote (2006) interpolate North American

snow data to a 1 degree by 1 degree grid. In the tundra, some grid cells do not have a

single station within their footprint, while others have only one station to provide data.

Furthermore, the few stations that do produce data are not always in the most

representative locations, however, they are often relied upon to represent sub-grid

average snow conditions. The complexity of the terrain, the snow cover variability

between years, and the representativeness of microscale point data for larger spatial

domains all need to be considered when extrapolating point station data (Yang and

Woo, 1999). The lack of spatially comprehensive in-situ snow observations is not

restricted to North America. Several studies lack crucial data for large scale modeling

and remote sensing algorithm development. The lack of in-situ data sometimes

necessitates the use of climatological global snow depth data like those developed by

the USAF/ETAC (Foster and Davy, 1988). While the development of these datasets is

certainly robust, it is not a suitable replacement for spatially distributed in-situ

measurements. As such, determining a method for accurately extrapolating tundra snow

cover data is vital to understanding large-scale tundra snow cover dynamics and

improving continental scale snow cover products.
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Process snow models are used to estimate snow distributions on a basin scale.

For example, various distributed blowing snow models have been developed to calculate

mass and energy fluxes of blowing snow and the resulting annual tundra snow

accumulation over heterogeneous catchments (Pomeroy et al., 1997). Model landscape

elements typically include vegetation, terrain, and exposure and fetch characteristics.

Blowing snow models have been employed over larger study areas (Bowling et al.,

2004), incorporated with linear windflow models (Essery, 2001), and combined with

other land surfaces models (Pomeroy et al., 1998). These models can successfully

replicate the relative pattern of snow accumulation in their study basins and are useful

for the identification of snow sources, sinks and areas not affected by wind redistribution.

However, without measurements of sublimation, available meteorological data,

topographic information and frequent in-situ snow surveys, such model results can be

difficult to validate.

Liston and Sturm (1998) developed a physically based numerical snow transport

model (Snow Tran 3D) which incorporates the effects of vegetation, topography and

sublimation and the dynamics of snow transport in order to estimate snow distribution.

The model inputs are wind speed and direction, precipitation, air temperature, humidity,

solar radiation, topography and vegetation snow holding capacity. The model has been

successfully used for reproducing snow distribution in an Alaskan study site (Liston and

Sturm, 1998), in a 5.5 km2 watershed in eastern Siberia with some modification

(Hirashima et al., 2004) and in study areas ranging from 1 km2 to 250 km2 in Svalbard,

Norway, with some changes made to the model (Bruland et al., 2004). These models

successfully provide estimates of snow distribution; however, they require

meteorological inputs which are not always available nearby, and the modeling methods

may not be directly transferable to other study sites.
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Physically based models of snow distribution have also been successfully used

for hydrological studies in high Arctic catchments. Woo and Young (2004) developed a 1

km grid model for estimating snow distribution and melt using a terrain model,

meteorological data and an end of season in-situ snow survey. This modeling, similar to

Woo and Marsh (1978) takes into consideration the strong, yet relatively consistent

relationship between topography and seasonal snow distribution patterns. In order to

lessen data collection requirements, the landscape is broken into classes, and stratified

sampling is done based on the distribution and abundance of each class. Random

samples of depth and density are taken from a specific class and are used to calculate a

class average (Pomeroy and Goodison, 1997). Using this computationally simple

technique, weighted average snow distributions can be generated over basins where

topographic information is known and end of season snow cover data are available.

1 .4.6. Snow Data from Remote Sensing

Remote sensing techniques have been employed to monitor snow since the

1960s when the visible light channels on the National Oceanic and Atmospheric

Administration (NOAA) satellites were used to map snow extent (Robinson, 1993).

These early snow extent products had their weaknesses and limitations; nevertheless, it

became evident that the data were very useful for application to weather model forecasts

of surface air temperature (Brasnett, 1999). The long time series of snow data provided

by the NOAA satellites remain one of the most valuable tools for examining spatial and

temporal variation in snow cover at both a regional and hemispheric scale (Brown and

Goodison, 1996, Tait et al., 2000). Since the development of these data sets, satellite

remote sensing has expanded to provide information on snow extent, depth, wetness,

and SWE with larger spatial swaths, improved spatial resolution and, in some cases, a

more rapid revisit frequency. Remote sensing products have the distinct advantage of

not being as labour intensive as data collection in the field and are often much less
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costly. Once the remote sensing data are parameterized, they can produce near real

time operational estimates without corresponding in-situ measurements or

meteorological observations. However, the utility of satellite sensors to provide useful,

operational tundra snow cover data depends on sensor parameters and the desired

resolution of data outputs.

1.4.6.1. Visible Spectrum Sensors

The spatial extent of snow cover over North America has been continuously

monitored and mapped on a weekly basis from 1 966 to 1 997 by NOAA. The snow charts

were produced through visible interpretation of 1 km resolution advanced very high

resolution (AVHRR) imagery from 1966 to 1997. No digital methods were employed by

the data interpreters; instead a binary snow / no-snow classification is used where a grid

cell has to contain 50% or more snow cover to be classified as snow (Tait et al., 2000).

The charts were produced on an 89 ? 89 polar stereographic grid for the Northern

Hemisphere, with cell resolution ranging from 126 ? 126 km to 200 ? 200 km (Robinson

et al., 1993).

The weekly snow maps were used primarily for numerical weather modelling.

However, large errors in the near surface temperature forecasts were noted due to the

temporal infrequency of observations (Ramsay, 1998). One of the main problems was

the inability to distinguish the snow / no snow boundary during cloud cover. To address

this problem, and improve the spatial and temporal resolution of snow charts, a new

interactive multi-sensor snow and ice mapping system was developed (IMS) in 1997.

The IMS product integrates passive microwave data in order to provide daily snow maps

with a much better spatial resolution (24 km) than the weekly maps (Ramsay, 1998). The

new IMS product output was quickly found to be much superior to the weekly maps and

integrated into the manual charting of snow and ice in 1999 (Ramsay, 2000). The IMS

product was upgraded in 2004 with new system dynamics and input data. The most
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notable improvements to the IMS were a shift to a 4 km resolution output, automated

snow detection algorithms and expansion to global extent (Helfrich et al., 2007).

There are several factors which compromise the accuracy and reliability of the

NOAA snow maps for high latitude environments. Foremost, early snow charts were

acquired using only visible spectrum satellite data which are limited to daylight hours and

useful only under cloud free conditions. Furthermore, there are also a number of
limitations, summarized by Robinson (1993), when manually interpreting snow cover

from visible imagery. Tree cover, such as the subarctic boreal forest areas, can mask

snow; the low sun angle of high latitude environments reduces the reflectivity and

detectability of the snow cover. Moreover, certain types of clouds, such as cirrus, low

stratus and small cumulus, are difficult or impossible to visually distinguish from snow

covered surfaces (Simic et al., 2004). Wang et al. (2005a) found that the NOAA weekly

dataset consistently overestimated high latitude snow cover extent during the spring melt

period. Delays in snow melt onset of up to 4 weeks were observed due in part to the

frequency of cloud cover and the low frequency of data coverage over high latitudes.

Their results suggest that caution should be used when applying these data to studies

that rely on snowmelt timing. Brown et al. (2007) found similar results in that the NOAA
snow cover duration dataset was not highly correlated with regional spring snow cover

duration from surface observations. One of the biggest weaknesses of the NOAA snow

maps and IMS products is the lack of snow depth, density or SWE information.

Visible spectrum LANDSAT TM data have also been used for monitoring snow

cover. Dozier and Marks (1987) along with Lundberg et al. (2004) utilize the data for

snow mapping, while Guneriussen (1997) shows how it can be integrated with other

remote sensing techniques, and Hall el al., 2000a, use the data for comparison and

validation of other snow extent products. A normalized difference snow index (NDSI) is

typically used to discriminate snow cover from bare ground using LANDSAT TM data.
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The NDSI uses TM bands 2 (0.56 µ?t?) and 5 (1.65 µ??) as follows: NDSI (LANDSAT TM)

= (Band 2 - Band 5) / (Band 2 +Band 5) (Riggs, 1994). The high resolution of LANDSAT

TM data (10-30 m) makes them more desirable for monitoring snow extent in smaller

basins and in more heterogeneous terrain. However, satellites revisit frequency is limited

to 16 days which hinders the ability to monitor rapid changes in snow extent.

Furthermore, as a visible wavelength satellite, LANDSAT data are restricted to

estimating snow extent during daylight hours and under cloud free conditions.

Data from the moderate resolution imaging spectroradlometer (MODIS) have

also been used to map snow extent. MODIS provides data with a 500 m resolution and

twice daily overpass times. MODIS snow mapping techniques are fully automated and

aim to overcome some of the typical limitations associated with the interpretation of

visible imagery and manual mapping of snow cover (Salomonson and Appel, 2004).

Snow cover is calculated with a NDSI using reflectance from bands 4 (0.545-0.565 µp?)

and 6 (1 .628-1 .652 µ??) and is defined as: NDSI = (band 4 - band 6) / (band 4 +band 6)

(Hall et al., 2002a). Each pixel is classified as snow if the NDSI is >0.4 and if the
reflectance of band 2 is >1 1%. If the band 4 reflectance exceeds 10%, then the pixel will

not be classified as snow. This technique is required as very low reflectance causes the

NDSI denominator to be quite low. This prevents very dark target pixels, such as dense

coniferous forests, from being classified erroneously as snow cover (Hall et al., 2002b).

A thermal mask can also applied using infrared bands 31 (10.78-1 1.28 µ?t?) and 32

(1 1 .77-1 2.27 µ??) to differentiate snow from cloud cover (Simic et al., 2004), while a

normalized difference vegetation index (NDVI) can be used with the NDSI to avoid the

erroneous classification of forested areas and improve the detection of snow in dense

forest cover (Klein et al., 1998).

MODIS data are used in combination with NOAA data by Natural Resources

Canada and the Canadian Centre for Remote Sensing. The data are used to provide
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daily snow and inland ice cover maps over Canada. The maps are produced at a 500 m
resolution and a simple binary snow no-snow classification is used (www.nrcan.gc.ca).

1.4.6.2. Microwave Sensors

Spaceborne microwave sensors have proven to be useful for monitoring the

cryosphere as they have 24-hour and all weather imaging capabilities, extensive spatial

swaths (hundreds of kilometers) at various resolutions and, depending on the sensor,

daily revisit possibilities (Sokol, 1999). Microwave sensors are either active or passive.

Passive sensors detect and record naturally occurring microwave energy, while active

sensors emit microwave energy towards a target and measure the amount reflected

back.

1.4.6.2. 1. Active Microwave Sensors

The most common type of active microwave sensor used for snow cover

research is RADAR. The RADAR sensor sends out a radio signal towards the target and

senses the amount of energy that is returned (HoIz, 1985). The magnitude of the signal

return or backscatter, measured in decibels (dB), is recorded in order to differentiate

between different target media. RADAR data are usually obtained using Synthetic

Aperture RADAR (SAR) systems which can provide data at spatial resolutions from 10 -

100m(Ulabyetal., 1982).

The total backscatter produced from a snow pack depends on the dielectric

properties of the snow and on the contributions of surface and volume scattering from

the air-snow interface, the snow volume and the snow-ground interface (Baghdadi et al.,

1999). The dielectric constant of snow is a function of the relative proportion of liquid and

ice crystals in the snow. Problems detecting snow cover occur during dry snow

conditions as active microwave sensors have difficulty detecting media with a low

dielectric constant, and the wavelengths most commonly used (C - Band, 5.3 GHz) are

too large to detect snow grains (Rango, 1996). Thus, in dry snow there is negligible
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volume scattering, and the microwave energy passes directly through the snow pack.

Under these conditions, the dominant controls on backscatter return are the soil

dielectric and soil surface roughness properties (Baghdadi et al., 1999).

When a snow pack becomes wet, the snow dielectric increases significantly, and

the subsequent scattering and absorption of the microwaves permit the detection of a

snow cover (Rott, 1987). The contrast in dielectric between wet snow and dry snow or

snow-free conditions is the basis for using SAR data to study changes in snow state.

Multi-temporal image subtraction of repeat pass imagery (imaged at the same spatial

location with a different time period) is used to detect a wet snow cover (Baghdadi et al.,

1997; Caves et al, 1999; Guneriussen et. al. 2001). This image subtraction approach

eliminates the effects of topography and macro scale surface roughness problematic to

individual SAR scenes (Nagler and Rott, 2000). The estimation of SWE using SAR data

has not been successful for the same reason that makes it possible to detect snow

wetness. Changes in snow surface dielectric permit detection of wet snow but prevent

penetration into the snow pack.

Active microwave data from Ku-band scatterometers (12 to 18 GHz) have also

been used to monitor snow cover. Sensors in the Ku-band have similar difficulties to C-

band in detecting dry snow cover; however, studies have shown that they are highly

sensitive to surface snow melt and largely not affected by vegetation cover (Nghiem and

Tsai, 2001). Wang et al. (2005b) use the Seawinds QuikSCAT Ku-band sensor data

(13.4 GHz) to produce maps of melt season duration over Canadian Arctic ice caps.

Brown et al. (2007) show that the high resolution of QuikSCAT data (5 km) can be

effective for monitoring spring snow cover variability at high latitudes.
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1.4.6.2.2. Passive Microwave Sensors

Satellite passive microwave data have formed the basis for many snow water

equivalent (SWE) and snow depth retrieval algorithms. These methods have been used

to successfully monitor snow cover in prairie environments (Goodison and Walker 1995,

Derksen et al., 2003), and in boreal forests (Goita et al., 2003; Pulliainen, 2006), but with

higher uncertainty at hemispheric scales (Kelly et al., 2003; Biancamaria et al., 2008).

Estimates of SWE and snow depth are based on measuring the extent to which naturally

emitted microwave energy is absorbed or scattered by the presence of a snow cover.

Passive microwave sensors offer promise to provide operational snow cover monitoring

for tundra landscapes; however, problems quantifying SWE and snow depth arise when

sub-grid scale snow stratigraphy and terrain features complicate the emission,

absorption, and scattering properties of the snow pack. The feasibility of passive

microwave remote sensing of tundra snow will be discussed in more detail in Chapter 2.

1.4.6. 3. Summary of Remote Sensing Data Sources

The previous sections outline how different remote sensing approaches can

provide snow data. Each sensor has its own set of strengths and weaknesses. Table 1 .3

provides a brief summary of each sensor group and what types of snow cover data they

can provide.
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Table 1.3. Summary of remote sensing sensors for detecting snow cover
Sensor Resolution Revisit

Frequency
Detectable

Snow
Parameters

Limitations

VISIBLE SPECTURM SENSORS
AVHRR
MODIS
LANDSAT TM

1 km
500 m
10m

Daily
Daily
1 7 Days

Snow Extent - Cloud Cover

- Need Daylight
- No SWE or volume
data

ACTIVE MICROWAVE SENSORS
C-Band SAR
Ku-Band

10- 100 m
5 - 25 km

3 to 35 days
Daily

- Wet Snow
Extent
-Melt
onset/duration

- Wet snow only
- Poor revisit
- Difficult to estimate

SWE or depth data
PASSIVE MICROWAVE SENSORS
19 and 37 GHz
Sensors

12 to 25 km Twice Daily - Dry Snow
Extent
-SWE
- Snow Depth

- Coarse resolution

- Complex sub-grid
heterogeneities

The selection of which remote sensing output data are most suitable depends

entirely on which snow cover parameters are needed along with the frequency of

observation required. For example, snow extent can be mapped using visible sensors,

however, not frequently at a high resolution. Wet snow extent can be mapped frequently

with Ku-Band sensors; however, the resolution is relatively coarse (multiple kilometers).

Passive microwave data are the only current operational option for providing estimates

of not only dry snow extent but also SWE and snow depth.

1 .4.7. Trends and Variability in Tundra Snow Cover

Many studies have compiled snow data from single sources and from combinations

of sources in order to observe large scale spatial and temporal snow cover trends. Most of

these long term snow cover records have been developed for comparison with climate

models (Brasnett, 1999, Brown et al., 2003, Brown, 2000, Brown, 1997) or for validating

remote sensing techniques (Chang et al., 2005, Derksen et al., 2005, Pulliainen, 2006,

Biancamaria et al., 2008). This type of research is important because regardless of how

robust modeling and remote sensing algorithms are, they must still be tested against
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spatially and temporally extensive observed data sets to ensure realistic results (Foster et

al., 1996).

Most researchers would agree that, along with a complete spatial coverage, the

longer the time series the better. This is especially true when providing snow cover data

for use in other disciplines. Spatial and temporal discontinuity is a problem with most

current long term northern snow cover datasets, as seen in Dyer and Mote (2006). As a

result, without reliable, spatially and temporally complete snow cover data, it is very

difficult to validate any large scale model predictions or completely understand tundra

snow dynamics.

1 .4.8. Summary of Tundra Snow Cover Data Sources

Section 1 .3 has described in detail the different sources of tundra snow cover

data. Table 1 .4 summarizes the different methods and their resolutions, as well as

advantages and disadvantages.

Table 1.4. Sources of tundra snow cover data

Method Resolution

Temporal Spatial
Advantages Disadvantages

In-situ - Often limited

(bi-weekly at
best)

- Depends on
survey parameters
(generally poor)

- Primary data
- Ability to control
survey variables
and data
collection

- Labor intensive

- Costly
- Could be biased
due to human error

Automated

Gauge
- Very good,
depends on life of
gauge

- Poor where there
are few stations

- Automatic
- Continuous

- Spatially
constrained
- Instrument
maintenance and

reliability
Modeled
Data

- Can be good
once model

parameterized
- Depend on
input data

- Depend on model
parameters

- Distribute point
data over an area

- Need input data
for model runs

- Not representative
of other areas

Remote

Sensing
- Excellent from
microwave and
coarse resolution

visible spectrum

- Good swath
coverage
- Spatial resolution
depends on sensor

- Automatic,
continuous, long
time series

- Problems depend
on spectrum used
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In-situ sampling is the only source for primary snow cover data. It is the most
reliable data source if the field sampling is properly distributed and collected without bias
and with as little human error as possible. The limitations of in-situ data are the costs
and labor intensity required to get a good spatial or temporal coverage. The temporal
coverage of in-situ data is usually not very good which limits their application to a
"snapshot in time" approach. Automatic gauge data provide a good temporal coverage;
however, unless there are networks of gauges the data are very spatially constrained. In
the case of a single station, in-situ work data need to be collected in order to assess the
representativeness of the station data. Modelled snow cover data can be good for
distributing point data over larger areas; however, the models need input meteorological
data for parameterization and are not always representative of other study areas.
Remote sensing platforms have also been used to provide snow cover information. The
temporal resolution from coarse resolution visible spectrum and passive microwave
sensors is very good (daily). However, the spatial resolution of these sensors limits their
application to large scale process studies. The main advantage of remote sensing data
is that they are collected automatically and have produced a long time series of data.
Specific problems retrieving snow cover parameters depend on the sensor and the
wavelength of energy being sensed.
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CHAPTER 2: MONITORING SNOW COVER WITH SATELLITE
PASSIVE MICROWAVE REMOTE SENSING

2.1. Introduction

All objects emit microwave energy if their temperature is above absolute 0 K. The

total amount of microwave energy output depends on the temperature and emissivity of

the object. Emissivity, e, can be defined as the microwave brightness of a graybody

relative to that of a blackbody at the same temperature (Ulaby et al., 1982). Blackbodies

are defined as objects that are perfect absorbers of incoming energy, and in order to

remain in thermodynamic equilibrium, are also perfect emitters of that energy. Since

objects emit only a fraction of energy relative to a blackbody at the same physical

temperature, emissivity can be further defined as

e = Tb/ T

Where Tb is the brightness temperature of a graybody, detectable with passive

microwave remote sensing, and T is the physical temperature of the object (Armstrong

et al., 1993).

2.1.1. Passive Microwave Sensors

Passive microwave sensors detect naturally emitted passive microwave energy.

Passive microwave sensors have been deployed on operational spacebome platforms

since 1972 with the launch of the Electronic Scanning Multichannel Radiometer (ESMR)

aboard the Nimbus satellites. Several researchers discovered that there exists a good

correlation between increasing snow depth and decreasing passive microwave emission

(Foster et al., 1980). Using data from the ESMR, Foster et al. (1980) found that shorter

wavelength (-37 GHz) emission was more sensitive to the structure and condition of the

snow, while longer wavelength emission (-19 GHz) was affected by underlying soil

condition. However, the resolution of the ESMR sensor (Table 2.1) restricted the

application of the data to large areas with very flat uniform terrain (Rango, 1996).
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Observations from the ESMR satellites were not extensively analyzed as early

understanding of the data was hampered by the coarse spatial resolution (Choudhury,

1989). Following ESMR was the Scanning Multi Channel Microwave Radiometer

(SMMR) launched in 1978 aboard the Nimbus 7 and Seasat satellites. The SMMR

sensor was a five-frequency, dual polarization radiometer which measured at 6.6, 10.7,

18, 21 and 37 GHz, with a 780 km swath at a constant incidence angle of approximately

50 degrees (Chang et al., 1987). The improved resolution of the SMMR sensor produced

more widespread interest and subsequent research initiatives with the sensor data

provided the foundation for passive microwave snow research (Chang et al., 1987). The
SMMR sensor was replaced by the launch of the Special Sensor Microwave Imager

(SSM/I) in 1987 aboard the Defense Meteorological Satellite Program (DMSP) platforms.
The SSM/I sensors continue to provide data at 19, 22, 37 and 85 GHz with a 1400 km

swath at 53 degrees (Hollinger et al., 1990).

Although neither the SMMR or SSM/I sensors were deployed specifically for

monitoring snow cover, they have proven useful for detecting snow cover and for

estimating snow depth and SWE (see Section 2.3). Limitations from the coarse

resolution of the SMMR and SSM/I sensors were partially overcome by the launch of the

Advanced Microwave Sounding Radiometer Earth Observing System (AMSR-E) aboard

the Aqua platforms in 2002. The AMSR-E sensors provide data at 6.9, 10.7, 18.7, 23.8,

36.5, and 89GHz, with similar temporal coverage as SSM/I, however, at a finer spatial

resolution (Table 2.1) (Kelly et al., 2003).
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Table 2.1. Passive microwave sensors

Sensor Date Revisit Frequency Frequency
(GHz)

Instrument Field of View

(km ? km)
ESMR 1972 to

1978
Daily 19

37 33 km
SMMR 1978 to

1987
Every other day 6.6

10.7
19
22
37

148x95
91 ? 59
55x41
46x30
27x18

SSMI 1987 to

present
Twice daily 19.3

22.23
37.0
85.5

69x43
60x40
37x29
15x13

AMSR-E 2002 to

present
Twice daily 6.9

10.7
18.7
23.8
36.5
89

76x44
49x28
28x16
31 ? 18
14x8
15x13

2.1.2. Passive Microwave Data

Passive microwave data can be collected on either ground based, airborne or

satellite platforms. For consistency, data from each platform are usually collected at a

consistent incidence angle of 50 to 53 degrees. The instantaneous field of view (IFOV)

of raw data is elliptical in shape and varies in size according to the height above ground

and the antenna characteristics (Figure 2.1).

833 km Altitude

Figure 2.1. SSM/I scan geometry (adapted from Hollinger et al., 1990)
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Satellite brightness temperatures (Tb) are collected either as raw, unprocessed

swath data or converted to the Equal-Area Scalable Earth Grid (EASE-Grid) format.

Swath data have the advantage of retaining the original frequency dependent imaging

characteristics. However, for time series observations, changes in orbital location affect

the swath level footprint location and necessitate the use of standardized EASE-Grid

data (Derksen, 2008).

The Equal-Area Scalable Earth Grid (EASE-Grid) format was developed by the

National Snow and Ice Data Center (NSIDC) for the data products generated by the

NOAA/NASA Pathfinder Program Special Sensor Microwave Imager (SSM/I) project.

These data products included primarily gridded passive microwave Tb derived from the

Tb at a relatively coarse 25 km resolution (Armstrong, Brodzik and Varani, 1997). The

EASE grid format provides a fixed geographic location for storage and retrieval of

satellite passive microwave brightness temperatures. The format is derived using an

optimal interpolation binning method of swath data to derive Tb at fixed grid locations. A

rectangular grid lattice is produced and superimposed on an equal-area map which most

faithfully represents the nominal passive microwave footprint (Brodzik et al., 2002).

2.2. Passive Microwave Radiometry of Snow

2.2.1. Introduction

The total microwave emission from a snow pack is a function of 1) the emission,

2) the dielectric properties, and 3) the physical temperature of the

Air-snow boundary

Snow pack volume

Snow-ground interface

Underlying soil / regolith

The emission from the snow volume is influenced by many factors, including

snow depth, SWE, snow density, liquid water content and snow grain size (Foster et al.,
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1980). Within a dry snowpack, when the radii of snow grains approaches a few
hundredths of the microwave wavelength, the volume scattering increases enough to

produce a detectable decrease in Tb (Chang et al., 1976). However, the absorption

capability of dry snow is in the order of 105 times less than snow with even a small
percentage of liquid water present (Stiles and Ulaby, 1980).

2.2.2. Basis for Passive Microwave Snow Detection

2.2.2.1. Dry Snow

In dry snow, the presence of individual snow grains increases the amount of

volume scattering and reduces the microwave emission. Thus, the deeper the snow

gets, the greater the amount of scattering and loss of emission. Mie scattering, which

occurs when particles are just about the same size as the wavelength of the radiation,

governs the degree of scattering within a snowpack (Chang et al. 1976). As such, the

size of the snow grains and the frequency being used are important in defining the

extent of emission from a snowpack.

Low frequency emission (6.9 to 19 GHz) is not affected by dry snow as the

wavelengths (4 to 1 .5 cm) are much longer than individual snow grains. These lower

frequencies are more affected by the properties of the underlying ground and by the

snow-ground interface. As the wavelength becomes shorter (0.8 cm, ~ 37 GHz), mie

scattering increases, and the emission is affected by the snow pack volume. However,

with even shorter wavelengths (0.3 cm, ~ 89 GHz), the penetration depth decreases due

to an increase in absorption of the emission by the snow grains. As such, the total

emission detectable at these shorter wavelengths is controlled largely by the properties

of the snow surface at the air-snow boundary. Figure 2.2, adapted from Ulaby et al.,

1986, demonstrates the relationship between grain size, frequency and penetration

depth.
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Figure 2.2. Penetration depth of microwave emission at different frequencies
(adapted from Ulaby et al., 1986)

Figure 2.2 shows that, at three different snow grain size radi (0.5 to 5 mm), 1) the

penetration depth decreases as frequency increases, 2) as the grain size increases the

penetration depth for a given frequency decreases, and 3) at the lower frequencies,

there is less difference in penetration depth between the difference grain sizes.

These relationships have important implications in determining which frequencies would

be most useful for dry snow detection. For example, in a snowpack with a grain size of

0.5 mm, the penetration depth is greater than 10 meters below 14 GHz. This means that

emissions at these frequencies are not influenced by typical non-alpine snowpacks (0 to

1 .0 meters deep). However, at 37 GHz, the penetration depth is much lower, around 35

cm. This indicates that these higher frequencies would be much more sensitive to subtle

changes in snowpack depth. The difference in penetration depth between the different

frequencies can then be exploited in order to detect a dry snow cover (Figure 2.3).
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Figure 2.3. Using the difference between a longer wavelength emission
(19 GHz) and a shorter wavelength emission (37 GHz)
to detect the presence of snow grains.

By using a brightness temperature difference between these two groups of

frequencies, both SWE and snow depth can be estimated while the effect of physical

temperature is minimized.

2.2.2.2. Wet Snow

The dielectric constant is the measure used in microwave remote sensing to

describe an object's electrical character. The dielectric constant for snow is a function of

frequency, snow wetness, temperature and density (Henderson, 1998).As the dielectric

constant increases, driven mainly by an increase in moisture content, the internal

microwave emissivity increases, and in turn, the absorption increases (Matzler, 1996).

The dielectric properties of snow at a given frequency are generally dependent

on the relative proportion of liquid and solid water in the snow. At temperatures above

freezing, there always exists water in the snow pack as thin films of water tend to bond

to the ice crystals. Wet snow completely changes the emissivity within a snowpack. For

example, dry or frozen ground has a high emissivity (0.90 -0.95), whereas wet ground

has a much lower emissivity (-0.70) with correspondingly lower brightness temperatures

(Foster et al., 1980). In a snowpack, as the liquid water content begins to increase, the
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snow begins to behave more like a blackbody, absorbing and re-emitting microwave

energy. As such, it can be very difficult to detect the presence of a wet snow cover as it
resembles snow free ground (Walker and Goodison, 1993).

Even a small amount of liquid water within a snowpack (1-4%) will cause a sharp

increase in Tb and decrease in penetration depth (Foster et al., 1980). This is

demonstrated in Figure 2.4, adapted from Ulaby et al., 1986.
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Figure 2.4. Penetration depth of microwave emission at 4, 10 and 37 GHz with
increasing liquid water content (adapted from Ulaby et al., 1986)

As the liquid water content increases, the penetration depth drops considerably

even at 4 and 10 GHz which have quite high dry snow penetration depth. These

relationships show that while detecting wet snow cover may be possible, quantifying

snow depth or SWE under wet snow conditions would be very difficult, if not impossible.

2.3. Passive Microwave Algorithm Development

2.3.1. Introduction

There have been many different passive microwave algorithms developed which

can provide some estimate of snow cover properties over both hemispheric and regional

scales. The common component in most operational algorithms is the use of the

difference in emission over snow covered ground between a longer wavelength channel,
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usually 18 or 19 GHz and a shorter wavelength channel, 36 or 37 GHz. Algorithms are

developed either through radiative transfer modeling or through empirical methods. The

general relationship used by both is some form of Equation 1

SWE (mm) = a + bATb [1]

where a and b are the intercept and slope for the brightness temperature difference

(ATb) between a 18 or 19 GHz and a 36 or 37 GHz vertically or horizontally polarized

channel. The 19 GHz channel provides a measure of snow free conditions (emission

from underlying ground) as the wavelength is long enough (-1.5 cm) not to be affected

by the snow grains. The 37 GHz wavelength (0.81 cm) channel is, however, influenced

by the number of snow grains and records a lower Tb than the 19 GHz channel. The

difference between the two allows for the estimation of SWE.

The choice of polarization is not consistent among microwave SWE algorithms.

Some utilize horizontally polarized measurements (Chang et al. 1990, and the modified

versions of Foster et al. 1997, Kelly et al. 2003), while others are based on vertically

polarized measurements (Goodison and Walker 1995, Mognard and Josberger 2002,

Goita et al. 2003, Pulliainen 2006). Horizontally polarized channels have been shown to

be slightly more sensitive to snow pack stratigraphy, while vertically polarized channels

are more sensitive to snow volume (Matzler, 1994).

Algorithms are developed using different parameters which depend on the nature

of the snowpack and landscape over which snow cover properties are to be estimated.

Algorithms can be grouped into two broad categories, hemispheric or regional scale. The

success and operational applicability of individual algorithms depend on the ability to

deal with snow pack and local terrain characteristics that adversely affect the normal

absorption and scattering properties of the snowpack.
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2.3.2. Hemispheric Scale Algorithms

Hemispheric scale snow data are important for both climatological analysis and

verification of GCM simulations (Foster et al., 1996). However, hemispheric scale snow

cover estimates based on in-situ and automated gauge measurements are typically

erroneous due to large spatial gaps and temporal discontinuity (Brown et al., 2003). As

such, passive microwave data with their large spatial extent, frequent re-visit times and

global standard spatial resolutions have been used to estimate large scale snow cover

(Tait, 1998). Hemispheric algorithms using passive microwave data have been produced

mainly to monitor snow cover trends over a large spatial extent with a focus on providing

a very high temporal resolution. However, at a hemispheric scale, there is the obvious

problem of the integration of many different land covers, snow characteristics and terrain

types into one single algorithm. Therefore, the trends in Tb that are observed may not

necessarily be reflective of changes in snow cover parameters.

Despite these limitations, several researchers have had success monitoring

snow cover with passive microwave data at a hemispheric scale. Chang et al., (1987)

utilized SMMR data to estimate snow extent and snow depth throughout the northern

hemisphere. SMMR snow extent compared favorably to the operational NOAA snow

maps and to snow station data. However, due to the penetration of microwaves through

shallow snow covers, snow extent was consistently underestimated using the SMMR

data. Snow depth estimated by SMMR Tb compared favorably to measured values only

in areas of homogenous terrain (Russian Steppe and Canadian Prairies). A hemispheric

snow extent and SWE algorithm development by Grody and Basist, (1996) utilized the

85 GHz channel from the SSM/I sensor to estimate Northern Hemisphere snow extent.

However, algorithms applicable over entire hemispheres, using a single set of

coefficients, have not yet shown to be very accurate or reliable. Foster et al., (1997)

attempted to address this issue by improving the methodology used by Chang et al.
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(1987). They separated North America and Eurasia based on forest and snow cover

effect in an attempt to better estimate snow extent. Tait (1998) further subdivided the

northern hemisphere into regions based on forest cover and snow state. However,

heavily vegetated environments (sub-Arctic boreal forest), areas with significant depth

hoar development (most high latitude environments) and areas that experience

significant snow re-distribution (tundra, high Arctic) were identified as problematic to

algorithm confidence.

The subdivision of algorithms into different landscape types addresses the spatial

heterogeneity of hemispheric snow cover, however, it does not tackle the temporal

evolution of a snowpack. Kelly et al. (2003) developed a prototype global algorithm to

tackle the issue of temporally static algorithm coefficients. Based on the algorithm

employed by Chang et al. (1987) they employ a dynamic approach which integrates the

effect of seasonal snow grain growth and the evolution of snow density. The inclusion of

these parameters improved the estimates of snow cover; however, more importantly;

they represent a significant step forward as they reinforce the need to consider not only

spatial differences in snow cover, but the seasonal evolution as well.

2.3.3. Regional Algorithm Development

Regional algorithm development is focused on gaining a better understanding of

snow-terrain-microwave emission interaction within specific environments. Regions of

study have been typically subdivided based on land cover type. Primary areas of

research have included open ground environments (prairies and open plains), sub-Arctic

boreal forests and the sub-arctic to arctic tundra. Each region presents a set of unique

challenges. The success of each algorithm depends on the ability to account for sub-grid

terrain and snow cover heterogeneity. Generally speaking, algorithms have been more

successfully employed in simpler, homogenous environments (prairies and open plains).
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Algorithms ¡? more complex environments (boreal forest and high arctic) need to

consider far more sub-grid landscape features and snow cover parameters.

2. 3.3.1. Open Ground Algorithm Development

The first passive microwave algorithms for estimating snow cover were

developed over open ground, prairie landscapes. The open plains or prairies are the

simplest, most homogenous landscape which receives an annual snow cover. Two

important open ground algorithms were developed during the 1980s using SMMR data.

The Chang algorithms, developed to estimate SWE (Equation 2) and snow depth

(Equation 3) have been used both regionally and hemispherically and still form the basis

for some current research and development (Chang et al., 1990). The algorithms utilize

the Horizontally Polarized 19 and 37 GHz channels on the SMMR, SSM/I or AMSR-E

satellite data.

SWE (mm) = a (Tb1 9H - Tb37H) [2]

Snow Depth (cm) = b (Tb1 9H - Tb37H)) [3]

The coefficients a and b are constants which have been determined for each satellite

platform (for example a = 4.8 and b = 1 .59 for SSM/I data). The Chang algorithm has

been widely used, modified to incorporate snowpack metamorphism over open ground

(Josberger and Mognard, 2002), and incorporated with landcover and topography data

for use at global scales (Kelly et al., 2003).

An operational open ground (prairie) SWE algorithm was developed at

Environment Canada (EC) during the 1980s for use with SSMR and SSM/I data. EC

(formerly Meteorological Service of Canada - MSC) has been using the algorithm

operationally to produce weekly prairie SWE maps since 1988; however, the approach

has been applied to SMMR data as well in order to develop a longer time series

(Derksen et al., 2003). The algorithm was developed for non-vegetated, non-alpine

environments and is based on the vertical polarization brightness temperature gradient
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from the 19 GHz (18GHz SMMR) and 37 GHz SSM/I Vertically polarized channels

(Equation 4) (Goodison and Walker, 1995).
SWE (mm) = -20.7 - 49.27[(Tb37V - Tb1 9V)/1 8)] [4]

The algorithm was developed through an intensive field validation campaign and

accurately represents SWE under predominantly dry snow conditions (Goodison and

Walker, 1994). The EC algorithm was developed and operationalized for the Canadian

prairies but has been applied and tested in other open ground environments and has

formed the basis for Canadian boreal forest algorithm development (Goita et al., 2003).

In the prairies, the main limitation of the EC algorithm is the presence of liquid

water in the snow pack (increased snow dielectric). This led to the development of the

EC wet snow indicator (Walker and Goodison, 1993), which uses both polarizations of

the 37 GHz SSM/I data channel and is useful for differentiating between areas of wet

snow, dry snow and snow free ground (Derksen et. al. 2000b). However, it remains

impossible to quantify SWE under wet conditions (Walker and Goodison, 1993).
The successful estimation of snow extent and SWE using the EC algorithm has

led to the development of time series research to examine long term snow cover

variability using passive microwave data extending back to 1978. Derksen et al. (2003)

found that trends and patterns in passive microwave estimated SWE compare favorably

to in-situ data in open and low density forest cover environments. However, in locations

where deep snow and/or dense vegetation were present, dataset agreement decreased

significantly, and there was little interannual variability in passive microwave SWE
retrieval.

2. 3. 3.2. Boreal Forest Algorithm Development

Boreal forests constitute 15% of the northern hemisphere winter snow covered

area and 40% snow covered area in the spring and fall (Foster et al., 1991). The

presence of a forest cover significantly complicates the nature of microwave emission
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and has a pronounced effect on resulting brightness temperature gradients. Thus,

algorithms developed for the boreal forest consider sub-grid forest cover into traditional

brightness temperature gradient and provide good context for dealing with other sub-grid

heterogeneity.

Foster et al. (1991) found that the inclusion of fractional forest cover improved

SMMR SWE estimates in the northern Saskatchewan boreal forest. However, in far

more dense boreal forests (northern Ontario and northern Quebec), SWE was

significantly underestimated (up to 50 cm less than measured in-situ). Pulliainen and

Hallikainen (2001) not only incorporate forest cover fraction but also consider the forest

biomass. They derived a forest canopy loss factor for different forest types that is

determined by empirical forest canopy transmissivity modeling. These forest cover

factors, in combination with considerations of snow grain size, effective soil roughness

and atmospheric conditions, were incorporated into the SWE algorithm. The algorithm

was most successful at estimating mid-winter SWE, but the accuracy varied from year-

to-year depending on annual temperature patterns and related ice layer formation.

Goita et al. (2003) developed a methodology for estimating SWE for Canadian

boreal forests by again taking into account the fraction and type of forest cover in each

pixel. Forest cover types used were deciduous, coniferous and sparse woodland. The

application of slightly different algorithm parameters for each forest type was found to

improve SWE estimates; however, there was a consistent overestimation compared to

in-situ values. In addition, SWE was not particularly well estimated in the transition

zones between forest cover and open areas. Snow cover in these areas is important to

monitor as the transition zone between dense forest cover and the tundra is not well

defined, can span many kilometers, and extends across the entire landmass of the

northern hemisphere (the tree line). Furthermore, the transition between boreal forests

and tundra will become increasingly important as it is an environment which will
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undoubtedly experience increased vegetation productivity and areal expansion driven by

increases in temperature and precipitation (Higgins and Vellinga, 2004). Walker and SiNs

(2002) examined 10 years of SSM/I estimated SWE data (1988-98) for the Mackenzie

River Basin and found that the inclusion of forest type alone may not be sufficient. With

the exception of the "sparse forest" algorithm class, there is no accounting for measures

of forest density. The inclusion of a forest-density factor, such as stem volume and

canopy closure especially in transition zones, may improve algorithm performance for
such environments; however, such data are not typically available for northern boreal

forests (Derksen et al., 2005).

The traditional 19 and 37 GHz algorithm approach can be limiting in northern

boreal forests due to the high correlation between forest cover and 37 GHz brightness

temperatures (Derksen, 2008). Furthermore, under deep snow conditions, volume

scattering can be evident in the 19 GHz brightness temperature. Derksen (2008)

suggests that the 19 - 37 GHz vertically polarized difference be used early in the season

when there is a shallow snow cover, while the 19 - 10 GHz difference can be employed

under deep snow conditions when scattering becomes evident in the 19 GHz Tb.

2. 3. 3. 3. Tundra and High Arctic Algorithm Development

Passive microwave sensors have often been used to monitor snow cover across

tundra landscapes; however, usually the tundra is included in a hemispheric scale algorithm

approach (Armstrong and Brodzik, 2002, Kelly et al., 2003, Foster et al., 2005). The

accuracy of tundra SWE estimates included in large scale algorithms are not often

discussed or have proven difficult to assess due to the lack of validation data. Despite these

limitations, passive microwave data have been used to monitor tundra snow cover in several

tundra study regions. These areas include 1) northern Manitoba (Boudreau and Rouse,

1994, Pivot et al., 2002, Toóse, 2007), 2) northern Quebec (Langlois et al., 2004), 3) across

the boreal tundra transition in the Northwest Territories (Derksen et al., 2005), 4) the high
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arctic islands (Woo et al., 1995), 5) Alaska (Hall et al., 1991, Sturm et al., 2003, Koenig and

Forster, 2004), 6) Siberia (Boone et al., 2006, Grippa et al., 2004), and 6) all sub-arctic and

arctic regions throughout the northern hemisphere (Biancamaria et al., 2008).

Each specific region imposes a unique set of challenges and requires a slightly

different approach. Moreover, recent research has had the advantage of building on

previous successes, failures and recommendations. Despite all the effort, there is no wll

accepted method for estimating tundra SWE and snow depth. The problem, which is

generally agreed upon, is that the conventional algorithm approach using a 19 and 37 GHz

Tb difference produces a marked underestimation of ground measured snow (Boudreau and

Rouse, 1994, Grippa et al., 2004, Armstrong and Brodzik, 2002, Rees et al., 2005).

The inaccuracies in current snow retrieval algorithms are caused by the inability to

properly account for sub-grid heterogeneity in the terrain, landscape and snow cover

parameters. The factors that hinder the use of passive microwave radiometry for deriving

tundra snow data can be generalized into two categories, 1) snow pack properties and 2)

terrain character (Table 2.2). Adding to these challenges is the difficulty in obtaining

temporally co-incident and spatially extensive in-situ snow data for comparison with

spaceborne Tb.

Table 2.2. Factors in the tundra that affect passive microwave brightness temperature

Factor Influences on passive microwave
emission

Snow pack Properties - Stratigraphy (wind slabs/depth hoar)
- Grain Size

- Snow Depth
- Temporal Evolution

Terrain Features and - Soil Condition

Landscape - Vegetation Cover
- Topography
- Lake Cover Fraction
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Each of the factors outlined in Table 2.2 affect Tb at different temporal and spatial scales

and contribute to the uncertainty both individually or in combination. These factors will be

discussed in more detail in Section 2.4.

2.4. Factors Contributing to Uncertainty ¡n Estimating Tundra SWE

2.4.1. Introduction

Early work in high latitudes utilized the traditional algorithm approach of

examining the difference between either the horizontally or the vertically polarized 37

and 19 GHz brightness temperatures. For example, Hall et al. (1991) compared in-situ

snow measurements to airborne and spaceborne passive microwave data along a

transect from the north coast of Alaska to Fairbanks in central Alaska. Near Fairbanks,

an inverse relationship was found between Tb and snow depth; this was similar to

results found in the open plains and prairies. Further to the north, in the Brooks Range,

there was found to be a noticeable decrease in Tb which corresponded to increasing

snow depth and depth hoar. This was expected as areas with the deepest snow and a

high percentage of depth hoar should produce the lowest Tb. However, the lowest Tb
values were in fact recorded further north in a tundra environment. The low Tb values

observed in the tundra were evident in both the airborne and through eight years of

spaceborne data. The exact reasons for the drop in Tb were not fully understood at the

time. However, the same Tb anomaly was not found to be present in summer data; thus,

it was assumed to be a product of the tundra snow pack properties, the ground state or

the presence of lake ice in the area. More recent research conducted in different tundra

study regions has certainly reinforced the need to investigate the influence of tundra

specific snow pack properties, landscape and lake ice on satellite scale Tb (Rees et al.,

2006).
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2.4.2. Snow Pack Properties

2.4.2. 1. Stratigraphy and Grain Size

Differences in snowpack structure can complicate the understanding of

microwave emission and Tb. Because of these differences, several microwave emission

models have been developed to simulate and understand the total emission from multi-

layer snowpacks (Weismann and Matzler, 1999). However, these models can be very

complex, and some researchers still prefer single-layer models for practicality (Pulliainen

et al., 1999). Sturm et al. (1995) indicate that tundra snowpacks typically have between

0 and 6 layers, the fewest number in any snow cover class except ephemeral and prairie

snow and consist of basal depth hoar overlain with multiple wind slabs. As such, the

parameters which will have the most influence on Tb are a) the development of basal

depth hoar (large grain sizes), b) the abundance of dense wind slab (> 0.400 g / cm3),
and c) the formation of ice crusts and lenses.

2.4.2. 1. 1. Effect of Depth Hoar

The detection of snow cover relies on examining the changes in microwave

emission caused by increased scatter from the presence of individual snow grains. Thus,

the size of the individual snow grains is an important control on the Tb from a snow pack

(Chang et al., 1976). In high latitude environments, the formation of large depth hoar

crystals at the base of the snow pack is common. Depth hoar is a product of constructive

metamorphism within a snow pack due to the strong temperature gradient between the

warmer underlying ground and colder air temperature. The temperature gradients

produce associated vapor pressure gradients. Since vapor diffuses from high to low

pressure, there is a net transfer of material from warmer (higher vapor pressure) to

colder (lower vapor pressure) parts of a snow pack (Langham, 1981). It can be assumed
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that depth hoar thickness and grain size will increase throughout a winter season as long

as there is a negative temperature gradient (Hall, 1987).

The large grain size of depth hoar increases the scattering of microwave

emission as the grain size approaches or exceeds the wavelength being used (Hall et

al., 1986). The presence of depth hoar has been shown to be responsible for lower than

expected Tb values (Hall, 1987). The reduction in observed Tb at 37 GHz has been

observed to be maximized as depth hoar approaches 30 cm in thickness. After 30 cm,

no additional scattering loss occurs, and the emission from the snow above the depth

hoar begins to dominate the Tb (Sturm et al., 1993). The orientation and shape of the

snow crystals have insignificant effects on Tb, and the main factor is the grain size

(Foster et al., 1999, Foster et al., 2000). The presence of the large grained depth hoar

crystals tends to produce an erroneous overestimation in in-situ SWE as the increased

scatter at 37 GHz is not a product of increasing snow depth (Hall et al., 1991).

Koenig and Forster (2004) compare the ability of three different contemporary

and one new SSIWI algorithm to estimate SWE over a large spatial domain in Alaska.

The new algorithm was empirically developed using regression techniques, specifically

for their study area, with both temporally and spatially averaged Tb data and was able to

reproduce ground measured SWE with an R2 of 0.678. However, the algorithm was
unable to reliably estimate SWE on a daily basis for individual pixels. Furthermore, there

was neither mention of the number of sites sampled within each pixel nor an indication of

the within-pixel variability in snow cover. Using a single in-situ SWE value for

comparison at a passive microwave pixel scale is not a robust method as the range of

sub-grid SWE can be extensive (Rees et al., 2005). Nonetheless, the work done by

Koenig and Forster (2004) shows that conventional algorithm approaches can estimate

SWE with good consistency in depth hoar-dominated study areas when temporally

averaged and considered at multiple-pixel watershed scales.
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2.4.2. 1.2. Effect of Dense Wind Slab

Dense snow layers, formed by intense, seasonal wind-redistribution, are typical

both at the surface and within tundra snow packs. Furthermore, the compaction of snow

grains by wind increases the number of grains per unit of depth and should contribute to

the saturation of microwave emission similar to deep snow. Unfortunately, the precise

effects of dense snow layers on the total Tb are hard to separate from the more

pronounced influence from depth hoar which typically forms under dense slab layers

(Halletal., 1986).

2.4.2. 1.3. Effect of Ice Lenses

Ice crusts, both within the snow pack and on the surface, have a much different

dielectric constant than snow. The presence of ice increases emissivity at high

frequencies relative to lower frequencies. This alters the between frequency Tb gradient

used in many algorithms to estimate SWE (Derksen et al., 2000b). The sharp contrast in

Tb between cold dry versus wet snow has been exploited to detect stages of severe

wintertime rain-on-snow events from the initial wetting of the snow to the accumulation of

liquid water at the base of the pack and to the post-event refreezing of the snowpack

(Grenfell and Putkonen, 2008). Rees et al. (2010), investigate the influence of less

intense, short duration melt or rain events, and resulting thin ice lenses, on the ability to

quantify SWE and snow depth. Observational data as well as microwave emission

models demonstrate that vertically polarized data is not influenced a great deal by the

presence of an ice lens. However, horizontally polarized data, even at longer

wavelengths are adversely affected by even a thin ice lens. This study has profound

implications for the ability of ?-pol data to estimate SWE in the presence of ice lenses.

Fortunately, in most high latitude environments, mid-winter freeze-thaw or rain events

which are responsible for ice crust formation are relatively rare. However, under potential

high latitude climate warming, more frequent mid-season melt events and liquid
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precipitation could increase the formation and presence of ice layers in the snow pack

and complicate algorithm development.

2.4.2.2. Snow Depth

Snow depth exerts a similar control on passive microwave emission than grain

size: as the snow depth increases, there are more grains available to scatter and absorb

the microwave energy. One difficulty with the traditional Tb inversion algorithm approach

is the well documented saturation of microwave energy (Sturm et al. 1993, Kelly et al.

2003, Derksen, 2008). At every frequency, there is a certain threshold at which an

increase in SWE or snow depth does not result in lower observed Tb (Durand and

Margulis, 2006). In fact, as depth increases beyond the saturation threshold, the snow

cover begins to emit its own microwave energy, eventually increasing Tb. This re-

emission of microwave energy means that there can be two different possible SWE for a

given Tb observation (Figure 2.5) (Matzler et al., 1982, De Seve, 1997).
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Figure 2.5. Reversal of modeled T8 at 36 GHz (Modified from Ulaby et al., 1986)
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The reversal of Tb in a snowpack means that without other methods of inferring

snow depth, traditional algorithms are limited to shallow snow cover (less than 150 to

250 mm SWE) (Matzler, 1994, De Seve, 1997, Tait, 1998). Assuming an average tundra

snow density of 0.305 g/cm3 (see Chapter 4), the reversal at 37 GHz would occur at 45

cm of snow depth. The exact snow depth at which the reversal in Tb occurs depends on

the frequency being used as well as the properties of the snowpack. Longer wavelength

energy (lower frequency) will have a greater penetration depth and a higher saturation

point.

The reversal of the Tb creates problems for algorithms developed using linear

relationships. Most approaches are not able to compensate for the reversal in slope, and

as such, have a certain threshold beyond which they cannot estimate SWE. One

solution for detecting SWE in deep snow is to use a difference between two longer

wavelength Tb (19 and 10 GHz). Derksen (2008) show how this approach improves the

estimation of SWE in boreal forests. Once snow depth increases to the point of

saturation at 37 GHz, the algorithm switches to a 19 and 10 GHz Tb difference. The 10

GHz channel is useful as the background as it is unaffected by all but extremely high

SWE.

2.4.2.3. Temporal Evolution of Snow

A fundamental property of snow is seasonal metamorphism, which is the change

in internal structure without any change in snow depth or water equivalent (Colbeck,

1986). Early passive microwave algorithms exploit the inversion between 37 and 19 GHz

emission in order to quantify SWE; however, problems arise using this approach

because these temporally static methods cannot deal with changes in Tb associated

with the seasonal metamorphism of the snowpack. Rosenfeld and Grody (2000) found

that at the beginning of winter, SSM/I snow signatures generally follow a classical

pattern. The Tb decreases with increasing snow depth. However, a significant deviation
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from this pattern was observed in the middle of winter at which time the Tb approaches a

minimum and begins to increase despite constant snow depth.

While success has been achieved using static inversion methods, they rely on

spatial and temporal average snow conditions (depth, SWE, density, grain size) to

parameterize the algorithms (Kelly et al., 2003). Accurately estimating SWE is possible if

static algorithms are always applied in the same spatial location and during the same

time of year. However, when temporally heterogeneous snow cover conditions are to be

estimated, algorithms need to be parameterized in order to compensate for the dynamic

seasonal evolution of snowpack parameters. The midwinter minimum of brightness

temperatures and reversal of Tb seen by Rosenfeld and Grody (2000) limits the use of a

single regression-type static algorithm to quantify snow depth and SWE throughout an

entire season.

There have been several dynamic algorithm approaches which have typically

focused on compensating for snowpack metamorphism (change in grain size)

throughout a winter season. The goal is to identify areas of snow cover and estimate

SWE from early in the accumulation season until the onset of snowmelt. For instance,

Kelly et al. (2003) assumed a snow grain diameter evolution scheme and developed

nonlinear inversion relationships for use at global scales. Josberger and Mognand, 2002,

use a similar premise; however, they examine snow and ground temperature to develop

a cumulative index of snowpack temperature gradient which accounts for changes in

grain size and improves the estimation of snow depth throughout a winter season.

Grippa et al. (2004) combine the static algorithm developed by Chang et al. (1990) with

the dynamic approach developed by Josberger and Mognand (2002). They use a

dynamic approach in the early through mid-winter portion of the season and employ a

static, linear algorithm with varying coefficients later in the season when grain size

growth slows. The use of a static algorithms consistently underestimates snow depth,
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while a combination of static and dynamic algorithms produces generally a better

agreement between the climatological snow depth data provided by USAF/ETAC and

SSM/I derived snow depth over seven seasons.

2.4.3. Terrain and Landscape Heterogeneity

2.4.3.1. Soil Condition

The condition of the underlying ground surface is important as it is a component

of the total microwave emission from a snow covered surface. The most important

parameter, similar to the snowpack, is the soil moisture content. Unfrozen, bare, and

moist soil has a much different microwave emissivity than frozen bare ground (Matzler,

1994). High soil moisture in warm ground influences microwave emission much like

liquid water in the snowpack (Derksen et al., 2000a). However, in most tundra

environments, the ground remains completely frozen during the winter season. The

presence of this continuous permafrost limits the potential of confounding soil moisture

effects. However, complications and uncertainty in microwave emission would certainly

occur early in the season, before the active layer is completely frozen and in sub-Arctic

tundra where permafrost distribution is discontinuous. Furthermore, soil condition may

become increasingly important to understand as potential climate warming stands to

change the seasonal evolution and spatial patterns of permafrost soils in high latitude

environments (Anisimov and Nelson, 1997).

The formation and presence of ground ice and highly saturated frozen soil at the

ground surface could also affect microwave emission at the ground-snow interface

similar to ice crusts and layers within the snow pack itself (Matzler, 1994). The sharp

contrast in Tb between cold dry snow versus wet snow has been exploited to detect

stages of severe wintertime rain-on-snow events and the accumulation ice crusts at

base of the pack (Grenfell and Putkonen, 2008).
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Boone et al. (2006) build on the work of Grippa et al. (2004) and integrate

simulated soil temperature and monthly soil temperature variation into a dynamic

algorithm approach. These ancillary data do improve the ability of SSM/I algorithms to
replicate SWE which is estimated from land surface schemes. These research methods

are important for highlighting the importance of snow evolution and soil temperature in

algorithm development. However, it is important to note that algorithms are being

developed with simulated soil temperature and are being tested against modeled SWE

and not ¡n-situ SWE or snow depth measurements due to a lack of data.

2.4.3.2. Vegetation Cover

The tundra landscape is largely devoid of a continuous closed canopy forest

cover. Vegetation cover typically consists of mosses and lichens, sedge grasses, dwarf

birch and other shrubs, along with sporadic and stunted coniferous trees. Vegetation has

the ability to influence satellite algorithm development indirectly by modifying sub-grid

snow cover distribution and directly by contributing to total microwave emission.

In high latitude environments, vegetation patterns alter snow deposition,

distribution and metamorphism characteristics. Snow deposited in trees accumulates

both in the canopy and on the ground. The snow which is intercepted in the canopy is

subject to accelerated sublimation loss due to greater absorption of short wave radiation

by the canopy and higher exposure to turbulent exchange forces. Experimentally derived
sublimation rates show that mature evergreen forests can return 13 - 40% of the

seasonal snowfall to the atmosphere (King et al., 2008). Interception and sublimation of

snowfall result in reduced ground snow pack depth when compared to open areas with

similar snowfall (Lundberg et al., 2004).

Wind action is the dominant process in open areas. Wind erodes snow from open

and sparsely vegetated areas and deposits it in areas of dense vegetation (Essery and

Pomeroy, 2004). This action increases snow depth and density on the windward side of
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a vegetation stand. Increased deposition, however, does not extend a long distance,

which creates a spatially inhomogeneous distribution throughout forest stands.

Emergent vegetation of any type traps drifting snow and prevents saltation until it is

covered to within 5 cm of its stem tops (Pomeroy, 1997). Once the vegetation becomes

buried by snow, there is much less influence, and a more uniform snow surface

develops.

In forested areas, the total microwave Tb consists of emission from underlying

ground, emission, scattering and absorption from the snow-ground interface, snow pack,

snow-air interface, forest cover (trunks, branches and canopy) and snow intercepted by

vegetation. As a result, modeling emission and isolating the contribution from the snow

pack can be difficult. Algorithms that incorporate within pixel fractional forest cover and

forest type seem to provide more reliable estimates of snow cover parameters than

those which do not (Foster et al., 1991, Goita et al., 2003, Derksen et al., 2005).

The transition between the boreal forest and tundra clearly illustrates the different

challenges associated with each environment. Derksen et al. (2005) show that in-situ

SWE can be estimated early in the year if brightness temperatures and forest cover

fraction are considered. Later in the season, however, forest fraction is not sufficient to

correct algorithms. Furthermore, there was little agreement between estimated and in-

situ SWE from the forest into the tundra. More detailed forest information, such as forest

transmissivity, which can be derived from MODIS data helps in determining which

frequencies are most useful for isolating SWE from forest cover (Derksen, 2008).

2.4.3.3. Topography

The effects of topography on SWE retrieval algorithms are twofold. First, satellite

passive microwave sensors operate with a ~ 50 degree incidence angle. As such, in

areas of high relief, the sensor is unable to image areas on the lee side of topographic
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features. This limits the feasibility of using passive microwave data to gently rolling

topography outside of mountainous environments.

The second and more prominent effect is the influence of topography on the

wind-redistribution of snow. Snow accumulation patterns throughout most of the tundra

are driven primarily by wind redistribution. Drifting snow accumulates in areas of dense

vegetation, which are usually topographically controlled, in depressions and on the lee

side of topographic features perpendicular to the prevailing wind direction. These

uneven snow accumulation patterns create problems for assigning a representative

mean snow cover value for coarse resolution grid cells. Furthermore, differences in snow

depth would produce a wide range of sub-grid cell emission characteristics. As outlined,

there is a limit (-150 mm) to the depth of SWE detectable using most operational TB

inversion algorithms. Drift features on the tundra, in the lee of slopes, can have SWE

values well in excess of 150 mm. Therefore, the actual SWE contained in these features

is at risk of being significantly underestimated.

Woo et al. (1995) conducted research on the Fosheim Peninsula, Ellesmere

Island, Nunavut, to investigate the sub-pixel variability in snow distribution and to

compare in-situ snow survey data to 85 GHz SSM/I Tb. The study area was broken

down by terrain characteristics, and SWE was measured along transects in each terrain

unit. To determine areally weighted SWE for each pixel, the mean SWE for each terrain

type was weighted by the area covered by that terrain. In-situ SWE was then compared

to 85 GHz Tb. Despite the coarse resolution, spatially variability in the Tb was evident

across the study area which may have been related to regional variation in snow cover.

Although this was preliminary research and no direct link could be established between

the passive microwave data and in-situ SWE, it identified the importance of the

distribution and within-pixel variability of snow cover to remote sensing in a tundra

environment.
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Although these snow and terrain parameters are all important components of a

high latitude environment, it is important to prioritize them based on the spatial

percentage of the environment they represent. For example, deep snow drifts on

leeward slopes in the tundra are a predominant feature as they represent a significant

volume of stored water. Snow depths greater than 5 metres can be sampled on drift

features just meters from wind-scoured, nearly snow-free plateaus. From a landscape

weighted perspective, however, these deep drifts occupy only a small percentage of a

pixel area (< 5%) and contribute minimally to overall brightness temperature at the scale

of satellite passive microwave observations (Rees et al., 2006).

2.4.3.4. Lake Fraction

Freshwater lakes and wetlands occupy a large fraction, 30 % or more, of the

Northern Hemisphere continental surface (Krinner, 2003). As such, lakes have a great

potential to influence satellite scale microwave brightness temperature. Research in the

Mackenzie River Basin by Derksen et al. (2003) shows that passive microwave SWE

estimates remain low throughout the entire winter, and the range of SWE is too narrow.

This trend is interannually present, and it is suspected that the inclusion of lakes may be

partially responsible as microwave emission from a frozen lake dominates over the

scattering signal from snow covered ground. It has been further observed that an

increase in within-pixel lake fraction could produce a systematic underestimation of

passive microwave SWE (Walker and SiNs, 2002). Despite these observations, the

microwave emission characteristics from ice and snow on lake ice, and fractional lake

ice area are presently not accounted for in any passive microwave snow cover retrieval

algorithm.

Microwave emission over lakes is controlled by snow cover, by ice-snow, ice-

water interfaces, by ice thickness and by the internal properties of the ice (Hall et al.,

1981). Statistics from detailed in-situ snow surveys conducted in northern Manitoba
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(Derksen et al., 2005), the Northwest Territories (see Chapter 4) and the Alaskan North

Slope (Sturm and Liston, 2003) show that the snowpack on lakes has different

properties and is relatively homogenous in comparison to adjacent terrestrial surfaces.

The main reason for the homogeneity of snow on lakes is the absence of topographic

and vegetative features which control terrestrial snow distribution (scour and drifting)

patterns. Variability in snow depth and SWE on lakes is a function of near-shore edge

effects and regular, lower magnitude, drifting patterns which depend on wind speeds,

direction and fetch.

The difference in snow cover properties from lakes to land does not have as

much influence on emission as the ice-snow, the ice water boundaries, and the liquid

water under the ice. The sharpest change in Tb occurs during the initial freeze-up, and

formation of lake ice as liquid water has a much lower emissivity than ice (Cameron,

1984). As the ice increases in thickness, the effect of the underlying water diminishes

proportionally with the penetration depth of microwave energy. As ice thickness

increases, there is self emission from the ice, and the Tb becomes more constant.

Modeling by Ulably et al. (1986) demonstrates this relationship. Figure 2.6 illustrates that

TB at 35 GHz increases rapidly as ice thickness increases. However, the relationship

begins to level off as ice thickness increases. The Tb begins to approach the physical

temperature of the ice as the ice thickness reaches the penetration depth at that

wavelength. The same effect is seen at longer wavelengths, however, at greater ice

thicknesses.
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Figure 2.6. Modeled relationship between brightness temperature and ice
thickness at different frequencies (Modified from Ulaby et al., 1986)

Snow on the ice surface has a similar effect as ice thickness. As snow depth

increases, it acts as a further buffer from the underlying ice-water interface. As such,

shorter wavelength frequencies are more sensitive to snow on lakes as well as the initial

stages of ice growth, and snow cover contributes more to the observed Tb than the ice

does (Hall et al., 1981). Observations with airborne passive radiometers by Hall et al.,

1981, show how longer wavelength emission (6.0 cm, 5 GHz) is insensitive to snow and

useful for estimating ice thickness (Figure 2.7).
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Figure 2.7. Observed relationship between T8 and ice thickness at 5 GHz
(modified from Hall et al., 1981)
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The properties of the ice can also have an effect on microwave emission. Little

research has been done using passive microwave data; however; it has been

recognized that ice dielectric, surface roughness, bubble concentration and whether the

ice is frozen to bottom can be determined by examining change to active microwave C-

Band (5.3 GHz) Synthetic Aperture Radar backscatter (Duguay et al., 2002, Toóse,

2007). Different properties of ice across a single lake surface could produce differences

in emission that are independent of snow depth and ice thickness (Hall et al., 1981).

The theoretical interaction of microwave emission with snow, ice, and terrestrial

surfaces has been well defined (Ulaby et al., 1986, Matzler, 1994). However, further

research is required in order to resolve the effect of sub-grid cell lakes in operational

satellite scale algorithms. Conventional static Tb inversion SWE retrieval algorithms do

not work over lakes because contrary to snow covered land, the Tb over a frozen lake at

the 37 GHz channel approaches the brightness temperature at 19 GHz (Hall et al.,

1981). Given the nature of the algorithms, when the brightness temperature of the 37

GHz channel approaches or exceeds the 19 GHz measurement, erroneous SWE

underestimation (including zero values when 37 GHz > 19 GHz) occurs (Derksen et al.,

2005). This occurs in the early season when in grid cells with 100% lake fraction,

satellite TB at 37 GHz can be as much as 20 - 25 K greater than at 19 GHz (Duguay et

al., 2005).

Current passive microwave satellite data are too coarse in resolution for

determining microwave emission from freshwater ice on all but the very largest of lakes.

This underscores the need to develop the capability to consider the influence of sub-grid

scale lakes on SWE retrieval algorithms. Derksen et al. (2005) compare fractional grid

lake ice percent to SWE retrieval values and found that within-grid lake fraction had a

temporally inconsistent influence on SWE estimation. Lake ice seems to have an effect

early in the season and becomes increasingly irrelevant towards the end of the season.
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2.5. Improving Passive Microwave Estimates of Tundra SWE

2.5.1. Introduction

Currently, no operational passive microwave algorithms exist for the spatially

expansive tundra and high Arctic regions due to the complexity in terrain, landscape and

snow cover characteristics, along with the lack of in-situ data for development and

testing. The heterogeneity of sub-grid tundra snow and terrain are definitely the limiting

factors in using conventional SWE retrieval algorithm techniques. However, reliable

estimates of SWE in these environments represent the final link to an otherwise nearly

complete coverage of northern hemisphere snow cover monitoring and should be a

priority.

As mentioned, satellite passive microwave tundra SWE retrieval algorithm

development is complicated by a number of factors. From the previous sections, it

becomes apparent that the main factors to resolve are the sub-grid variability in 1) snow

pack characteristics, 2) distribution of snow cover, and 3) lake ice fraction. The following

three sections outline how these issues will be addressed.

2.5.2. Addressing Snow Pack Characteristics

Snow pack characteristics affect microwave emission across both spatial and

temporal scales. The spatial distribution of snow cover is more important to consider in

the context of static algorithms while the evolution of the snowpack is more important to

consider in dynamic algorithm development. The snowpack characteristics which need

to be considered are summarized in Table 2.3.

Table 2.3. Snowpack characteristics at spatial and temporal dimensions

Snow Cover Parameters at Spatial
Dimensions (static algorithm)

Snow Cover Parameters at Temporal
Dimensions (dynamic algorithm)

Snow depth - Evolution of snow grain growth
Snow density - Change in depth over time
Snow grain size (depth hoar) Change in density over time
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At spatial dimensions, the within-grid variability of snow depth, density, and grain

size need to be defined. There needs to be an examination of trends in these features

over successive years. Somehow the complexity of tundra snow cover needs to be

generalized, classified or modeled, so it can be considered at coarse resolutions. The Tb

inversion approach of static SWE retrieval algorithms should work in the tundra if

properly parameterized. The regression SWE or snow depth on Tb does consider the

grain size, density and stratigraphy of the snowpack. However, the snow cover is

considered only as within-pixel average conditions which contribute to a given Tb. The

challenge, however, is determining if certain snowpack characteristics, such as large

depth hoar crystals, will have systematic effects and cause shifts in algorithm retrieval

values which are not a product of SWE or snow depth. Furthermore, it is uncertain at this

point how integrating snowpack spatial heterogeneity into coarse resolution grid cells will

affect simple regression based algorithms.

At temporal dimensions, the evolution of the snowpack must be examined. Static

algorithms parameterized for a given "average" snow condition are not expected to

perform at different times of year when the snow stratigraphy is much different. Dynamic

algorithms are developed to consider the evolution of snow depth, density and snow

grain metamorphism. The biggest problem in developing these methods is obtaining

temporally and spatially distributed data for algorithm development and testing.

2.5.3. Addressing Snow Distribution Issues

In the context of satellite passive microwave remote sensing, snow cover

distribution can be discussed at two scales. Regional scale snow distribution involves

characteristic distances of 1 00 to 1 000 km where snow cover is controlled mainly by

dynamic meteorological effects, such as standing waves in the atmosphere, lake effects

and directional flow around barriers (Pomeroy and Gray, 1995). Snow cover variation at

a regional scale does not significantly complicate satellite SWE estimation as regional
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differences in snow fall and snow depth and distribution can be discussed for a larger

scale than one single pixel. It is the mesoscale or local variations in snow cover

parameters that are extremely problematic to SWE retrieval as they occur over linear

distances far smaller than the dimension of one spacebome microwave pixel (< 25 km).

The most prominent local scale effects in the tundra are the influences of topography

(slope and aspect) and surface cover (vegetation, boulder fields) on the wind-

redistribution of a snow cover.

It is not yet known to what extent sub-grid snow distribution will affect satellite

scale Tb. Furthermore, there has been little research done to quantify within-grid tundra

snow cover variability in the context of coarse resolution algorithms and models.

In order to determine the effect of snow distribution patterns on passive

microwave algorithm development, a two tiered approach must be taken.

1) A better understanding of the physical processes involved in snow wind re-

distribution is required. For example, how do topography and wind direction control

snow deposition? Can SWE and snow depth be classified according to topography

and land cover? Is there any inter-annual consistency in these patterns?

2) Once snow cover distribution areas are classified within a pixel area, airborne

and ground based radiometers could be employed to determine the microwave

emission characteristics from each feature. This would determine the change in

microwave emission across the landscape from flat tundra, through deep snow

drifts to blown free ridges.

The first step has been investigated through the development of distributed

models described in Section 1 .3.5. These models help provide a framework for

understanding patterns of tundra snow distribution. However, little research has been

done to consider the integrative effect of snow distribution patterns within passive
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microwave grid-cells. The key to understanding these relationships is the application of

high resolution multi-scale passive microwave data throughout a satellite grid cell.

2.5.4. Addressing Lake Fraction

Snow covered lakes present a significant challenge to algorithm development

due to the large contrast in microwave emission from lakes to the land surface. Similar to

snow distribution, integrating lake cover fraction into algorithm development involves

both a better understanding of within pixel lake cover variability and the effect of different

lake characteristics on microwave emission. In tundra environments, within-pixel lake

cover varies significantly in terms of total lake cover fraction, individual lake surface area

and bathymetry. Lake cover fraction data are available at a 1 km2 resolution for all of
Canada from the Canadian Center for Remote Sensing (CCRS) and from the

International Geosphere-Biosphere Programme (IGBP) land cover classification. The

CCRS data are derived through the aggregation of vector maps produced by the Center

for Topographic Information of Natural Resources Canada. The vector maps are

produced from a combination of air photo and satellite data and are rigorously checked

for positional accuracy (FiIy et al., 2003). The IGBP global land cover classification is

derived from AVHRR and MODIS data and includes other vegetation and land-use

classes (Loveland et al. 2000).

Derksen et al. (2005) show that lake cover fraction alone may not be sufficient to

explain algorithm imprecision. Part of the problem may be that lake cover fraction

provides a value for only the total amount of pixel occupied by lake cover. It lacks more

specific information on the size and number of lakes that make up the total fraction. It is

possible for two passive microwave pixels with similar fractional water cover to have very

different lake characteristics. One pixel may contain a single large lake and almost no

smaller ones. However, a second pixel may contain no large lakes but a multitude of

smaller lakes whose cumulative surface area is the same as the large lake in pixel one.
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Smaller lakes in tundra environments tend to be shallower and are more likely to be

frozen to bottom while larger lakes can be very deep and contain a significant volume of

water under the ice. This scenario is important to consider in terms of potential

differences in microwave emission both spatially and temporally. If there is found to be

differences in passive microwave emission between lakes of different characteristics

then ancillary data may be needed to classify within-grid lakes beyond simply percent

area.

Incorporating lakes into satellite scale algorithms will require the resolution of 1)

the difference in microwave emission of snow over lakes versus land, and 2) the

difference in snow cover characteristics on lakes versus land. To resolve these issues,

there is a need for detailed surveys of snow on lake and land and of lake ice thickness

and characteristics, and the deployment of multi-scale radiometers to quantify the nature

of microwave emission over tundra lakes.

2.6. Summary of Research Protocol and Data Requirements

The research protocol and data requirements are defined in part by the overall

objective of the project. The overall objective, as stated in Section 1 .4.5, is to improve

operational capabilities for estimating end of winter, pre-melt tundra SWE in a

representative study area using satellite passive microwave data.

The key words in this objective are "end of winter, pre-melt snow cover

parameters." Framing the objective in this way eliminates the need to consider the

seasonal evolution of the snow pack. The emphasis must be placed first on developing

and parameterizing an algorithm which can quantify snow depth and SWE at a given

moment in time. Integrating snow metamorphism over the winter to develop a seasonal

algorithm approach would require more temporally intensive and costly field work.

Chapter 2 provides a comprehensive review of the current state and challenges

of employing passive microwave data to estimate tundra snow cover parameters. The
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key data requirements, as discussed in Section 2.5, needed to meet the overall objective
are

1) Spatially extensive and detailed in-situ snow cover data collected in a

representative study area over multiple years, and

2) Multi-scale airborne and ground based passive microwave radiometer data to

determine microwave emission over homogenous snow and land cover

types.

The next step is to define a study area and describe the data sources. These

topics will be the focus of Chapter 3.
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CHAPTER 3: STUDY AREA AND DATA

3.1. Introduction

The study area for the project is located in the Daring-Exeter-Yamba portion of

the Upper-Coppermine River Basin in the Northwest Territories. The region around the

study area is ideal for meeting the project objective because the terrain, landscape and

snow cover are representative of a large part of the Canadian Shield tundra. Field

campaigns were based out of the Government of the Northwest Territories (GNWT)

Tundra Ecosystem Research Station (TERS). The station provides a good base for

snow surveys as it is free from development and industrial activity. TERS is also the site

of 1) the Canadian Tundra Ecosystem Carbon Study (CTECS), aimed at understanding

tundra carbon dioxide exchange, 2) Environment Canada's Ecological Monitoring and

Assessment Network (EMAN-North), aimed at ecological monitoring to better detect,

describe, and report on ecosystem changes, 3) the Canadian Tundra and Taiga

Experiment (CANTTEX), which is linked to the International Tundra Experiment (ITEX),

which are aimed at monitoring long-term changes in northern terrestrial ecosystems, and

4) GNWT wildlife research projects. All of these projects would benefit to some degree

from the intensive spatial and temporal snow cover data sets developed through this

project. Monitoring snow cover across this part of the tundra is especially important for

evaluating the potential impacts of predicted climate change, mineral exploration and

further mine development throughout the region.

3.2. Study Area

3.2.1. Location

The study area is located in the zone of continuous permafrost, above the

treeline and is considered a part of Canada's Low Arctic environment (Rouse et al.,
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1997). The size, orientation and boundaries of the study area were defined based on the

EASE grid (25 ? 25 km) centroid located closest to the research station. As outlined in

Section 2.1.2, the EASE-Grid is a commonly used projection for satellite passive

microwave data. The chosen EASE grid cell centre is located approximately 9 km

southwest from the TERS (12 W 472019 7193751) (Figure 3.1).
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Figure 3.1. Location of the TERS and the study area

"North

3.2.2. Geology and Soils

The study area is situated in the Slave Geologic Province (SGP) of the Canadian

Shield. The SGP occupies 213 000 km2 and consists of very old granite, gneiss, and

metamorphosed sedimentary and volcanic rocks formed during the Precambrian Era (up

to 4 billion yrs old). The rocks of the SGP house a variety of mineral deposits and
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virtually the entire province is an attractive exploration target for more than one mineral

resource (Saxena and Bentz, 1995).

The surficial geology consists of thin sediments and rock fragments which have

been reworked considerably during continental glaciation. In general, soil development,

though limited, is controlled by climate, topography, biological activity, geochemical

weathering of parent material and time. In the study area, parent material is provided

largely by the coarse texture sorted sand and silt produced from glacial erosion and

deposition. Basin morphometry also plays a role in determining soil moisture conditions.

Steeper slopes tend to be better drained while moisture is retained in poorly drained

lowland till deposits. Slope aspect is important given the low sun angle at the latitude of

the study area. South facing slopes receive significantly more insolation and are typically

much drier than north facing slopes. However, climate is the major limiting factor in arctic

soil formation as low mean annual temperatures keep the soil frozen as permafrost for

most of the year. The short growing season limits biological activity, thus reducing

organic matter decomposition which greatly retards soil development. The soil order in

the study area is Cryosol with a high degree of variability throughout depth, and the

great soil group is classified as a Turbic Cryosol (Oelbermann et al., 2008).

3.2.3. Vegetation

The vegetation in the study area is low arctic shrub tundra which is characterized

as largely treeless, dominated by mosses, lichens, low-lying herbs and dwarf shrubs.

Vegetation distribution is topographically controlled. Ridge tops are typically rocky with

only lichens and herbs present while flatlands are dominated by sedges and mosses.

Valleys and localized depressions tend to contain dwarf willow, birch and spruce.

Lowland areas are composed of wet sedge meadows with frost features which give a

hummocky character to the landscape (Rouse et al., 1997).
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3.2.4. Climate

The mean annual daily temperature in the study region is -8.7 0C, (-29.8 0C in

January and 13.9 0C in July). The soil remains continuously frozen into early June when

the active layer begins to form (Oelbermann et al., 2008). The mean annual precipitation

is 260 mm with snow being the dominant input from October until late May. The closest

meteorological data are available from an Indian and Northern Affairs (INAC) tower

located at the TERS site but the site is unmaintained and measurements are interrupted

by lack of power during the winter season. Consistent weather observations (0500 to

1700 local time) are made at the BHP Ekati Mine, located approximately 50 km to the

south east of the TERS site.

3.2.5. Hydrology

The study area contains many lakes and rivers which drain into the Exeter-

Yamba-Daring portion of the upper Coppermine River. The Coppermine River drains an

area of 50 800 km2 and flows a length of 845 km to its mouth just east of Kugluktuk on

the Arctic Ocean. Many parts of the Coppermine basin are undergoing significant land

use change due to resource extraction, and concerns have been raised about the

cumulative effects of mining and other human development on water quality and on the

health of northern aquatic ecosystems (Peramaki and Stone, 2007).

Water quantity is measured continuously at a Water Survey of Canada gauging

station (10PA002) located on the Yamba River below Daring Lake (Figure 3.2). The

basin area above the gauge is ~ 3000 km2 and real time data are available online since

the gauge was installed in 1999 (www.wsc.ec.gc.ca).
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Figure 3.2. Approximate shape of the Daring, Exeter, and Yamba Basins
manually interpreted from NTS topographic maps

3.3. Data Acquisition

3.3.1. Introduction

Data collected specifically for this research project were obtained during

intensive late winter field campaigns in 2004, 2005, 2006, 2007, 2008, and 2009. Data

were also available from a preliminary snow survey conducted for another research

project during the late winter of 2003. All of the field campaigns were temporally

restricted to late winter as it is logistically difficult to monitor snow processes throughout

an entire season in a remote tundra location. Furthermore, little melt is observed during

mid-winter in tundra environments, and the late winter surveys provide a measure of the

total winter snow accumulation. Snow surveys were conducted primarily to quantify pre-

melt SWE conditions for comparison to satellite passive microwave data.
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Prior to data acquisition, topographic and landscape data of the study area were

examined in detail in order to plan the overall sampling strategy. As such, the area was

broken down into different strata based on expected heterogeneity in microwave

emission and snow cover from different terrain and landscape units, as discussed in

Section 2.4. The stratification was based largely on obvious differences in terrain and

landscape character.

3.3.2. Terrain Classification

A simple terrain classification was generated using topographic data in order to

delineate different terrain and landscape strata in the study area. Unfortunately, limited

amounts of topographic data in digital form were readily available for the study area. As

such, a large amount of contour data had to be derived through intensive manual

digitizing of hard copy National Topographic System (NTS) maps. Ten meter contour

data were used to produce a digital elevation model (DEM) for the study area. The DEM

was then used to identify and delineate areas of flat tundra and slopes of different angles

and aspects. Slope angle is difficult to measure when the ground is covered by a several

meter thick snow drift, however, as observed in the field, and summarized by Pomeroy

et al. (1997) lee slopes of about 9 degrees promote the formation of drifts with a 5 to 7

degrees slope. As such, snow slopes of 7 degrees were selected as the cut-off between

steep depositional slopes and lower slopes. Lake cover data from the NTS maps were

then overlain on the DEM to determine the locations and size of lakes in the study area

(Figure 3.3).
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Steep East Slopes
Low South Slopes

Steep South Slopes
Low West Slopes

Steep West Slopes

Figure 3.3. Terrain classification of study area

The classification of terrain was then used to determine the percent grid area
occupied by the different terrain units (Table 3.1).

Table 3.1. Terrain units and percent of study area

4

8

10
11

Terrain Unit

Flat Tundra
Lakes
Upland Plateaus
Low North Slopes
Steep North Slopes
Low East Slopes
Steep East Slopes
Low South Slopes
Steep South Slopes
Low West Slopes
Steep West Slopes

Percent Study Area
36.7
25.6
2.0
6.0
3.1
4.6
2.8
6.3
3.3
7.4
2.5
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3.3.3. Landscape Classification
Landcover information was obtained from a GNWT vegetation classification

completed in 2001 as part of the West Kitikmeot Slave Study (www.nwtwildlife.com).

Landcover types were generated using a supervised classification of vegetation, land

cover, ecosystem unit, and habitat compiled by the wildlife division (ENR) of the GNWT.

The 2001 classification used eight LANDSAT scenes and covered a total area of about

200,000 km2 with a spatial resolution of 30 m. Nineteen classification categories were

used: fourteen vegetation units, three un-vegetated and two for water. To generate the

classification, ground data were gathered from 300 to 500 sites for each scene to

provide information for testing and increasing the accuracy of the computer's
classification of the satellite imagery. The accuracy from scene to scene varied from

51% to 82% (www.nwtwildlife.com) (Figure 3.4).

I I Unclassified
I I Lichen Veneer
I I Deep Water
I I Esker Complex
I I Wetland (Sedge Meadow)
I I Shallow Water
I I Tussock/Hummock
I I Heath Tundra
IHfü Spruce Forest
i I Bedrock Association
I I Tall Shrub
I I Birch Shrub
I I Heath/Boulder
I I Heath/Bedrock
I I Boulder Association

l

Figure 3.4. ENR 2001 LANDSAT landcover classification
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The landscape classification was used to determine the percent grid area

occupied by the fifteen different landscape units present in the study area (Table 3.2).
Table 3.2. Landcover classification and percent study area

Grid Code

0

10
11
12
13
14
15

Landcover Class

Unclassified
Lichen Veneer

Deep Water
Esker Complex
Wetland (Sedge Meadow)
Shallow Water
Tussock/Hummock
Heath Tundra
Spruce Forest
Bedrock Association
Tall Shrub
Birch Shrub
Heath/Boulder
Heath/Bedrock
Boulder Association

Percent Study Area
0.10
3.62
17.94
1.59
2.69
10.79
17.88
24.07
0.30
3.90
0.29
0.49
13.19
2.35
0.92

Another classification was done by ENR for a breeding bird survey in 2004 which

used two high resolution IKONOS images (1 m panchromatic, 4 m multispectral) in the

immediate vicinity of Daring Lake. The classification was extensively evaluated;

however, the data are limited to a small part of the study area to the northeast of Daring

Lake.

3.3.4. Snow Data

3. 3.4.1. Snow Survey Locations

Within the 25 ? 25 km study area, a north-south and east-west grid was

established using 2.5 km fixed intervals. This grid was used as a reference for snow

surveys (see Figure 3.5). Sampling locations were established as follows:

1) At the intersection of north-south and east-west grid lines (un-biased, fixed

interval sampling),
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2) At sites along the grid lines where the terrain and snow cover changed

significantly and were seen as representative of a given terrain category

(biased, stratified transect sampling),

3) At other sites of interest throughout the larger Daring-Exeter-Yamba basin

(biased site selection, random locations) and,

4) At 5 m intervals along selected grid lines (fixed interval, transects, in 2008

and 2009).

N

\ ?-

25 km

Figure 3.5. Reference grid for survey locations

The primary objective of each annual snow survey was to collect spatially

distributed in-situ snow data which could be compared to EASE grid satellite scale

brightness temperature (Tb) data. In order to compare data from one year to the next, a

secondary objective was to visit the same sites during each field campaign. Most of the

sampling was done via snowmobile which determined the proximity to the research

station. However, the availability of a helicopter during the 2004 and 2005 campaigns

permitted the acquisition of snow data a greater distance from the Daring Lake camp.

The acquisition of temporally co-incident airborne radiometer data in 2005 and 2008
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necessitated a change in the snow sampling protocol. During these campaigns, more

focus was dedicated to sampling along flight lines and less to areas in the grid where the

aircraft did not pass overhead. As a result, the distribution of sites surveyed varied

somewhat from year to year.

3.3.4.2. Snow Survey Protocol

Site locations based on the pre-determined grid were input into handheld GPS

units prior to sampling, and snow survey crews traveled to each site either by

snowmobile or helicopter. Upon arrival, the exact sampling locations were chosen to

best represent the surrounding terrain and snow cover conditions, however, as close to

the pre-determined location as possible. The goal of this decision making was to avoid,

whenever possible, extremely localized features, such as small depressions, drifts or

rock outcrops. To reduce complexity, these features cannot be considered as separate

classes in a generalized classification scheme. These features were noted in the field

books; however, since they often occupy a very small spatial extent, and represent an

insignificant percentage of the overall landscape they are excluded. Encompassing such

features would require an infinitely complex classification system which is not feasible

when attempting to generalize snow cover over a 625 km2 study area.
At each site, a manual snow probe was used to obtain 30 depth measurements

taken in a circular pattern around the site. Five snow cores were taken at random

locations using an ESC 30 snow corer. The weight of each core was measured using a

hanging Pesóla spring scale. The instrument error of these scales is manufactured to be

±10g.

Snow density and SWE can be easily calculated from the ESC 30 measurement

and the weight of the core as follows:

ESC 30 SWE (cm) = Core Weight (g) * 30

ESC 30 Density (g/cm3) = Core Weight (g) / [30*Core depth (cm)]
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At each grid intersection site, a snow pit was excavated in order to examine snow

stratigraphy and grain size and to obtain a snow density profile from the snow-air

interface to the ground at 10 cm intervals. The snow density was measured by collecting

snow in a 10 cm aluminum wedge cutter and weighing the sample with the Pesóla scale.

3. 3. 4. 3. Annual Snow Survey Sample Numbers

The terrain classification developed (see Section 3.3.2) was used to determine

the percent area of the basin occupied by each terrain category. For sites not located at

pre-defined grid intersections, target sample site numbers for each terrain category were

determined based on what percent of the total area the category occupied. The goal was

to generate sample numbers for each terrain category as close as possible to the

proportion of the study area they occupy. During each year, between 147 and 255 sites

were sampled (Table 3.3). In 2008, an automated snow probe (Magnaprobe™
developed by SnowHydro Ltd.) was used to supplement regular sampling. Snow depths

were measured using the probe at 2 m fixed intervals along 40 km of transect.

Table 3.3. Sample ? and the percent of total basin area occupied by each terrain
category for the survey years

Terrain
Category

Percent
of Total
Basin
Area

2004
Sample Sites (n) and % of Total ?

2005 2006 2007 2008 2009

Flat Tundra 35.2 (49) 20% (55) 32% (64) 27% (84) 33% (47) 32% (72) 32%
Lakes 27.1 (49) 20% (31)18% (51)21% (50) 20% (32) 22% (46)21%
Upland
Plateaus
Low North
Slopes
Steep North
Slopes
Low East
Slopes
Steep East
Slopes
Low South
Slopes
Steep South
Slopes
Low West
Slopes
Steep West
Slopes
TOTAL ?

3.5

7.1

1.8

5.5

1.4

7.6

1.9

7.8

1.1

(41)17%

(13) 5%

(13)5%

(9) 4%

(11)5%

(18)7%

(12)5%

(13)5%

(12)5%

243

(18)11%

(10)6%

(6) 4%

(7) 4%

(9) 5%

(7) 4%

(4) 2%

(11)7%

(8) 5%

170

(42)18%

(9) 4%

(10)4%

(11)5%

(9) 4%

(8) 3%

(7) 3%

(11)5%

(10)4%

238

(36) 14%

(18)7%

(5) 2%

(17)7%

(5) 2%

(12)5%

(6) 2%

(11)4%

(11)4%

255

(14) 10%

(10)7%

(3) 2%

(10)7%

(4) 3%

(9) 6%

(3) 2%

(13)9%

(2) 1%

147

(29) 13%

(21)9%

(5) 2%

(14)5%

(3) 1%

(15)7%

(3)1%

(10)5%

(4) 2%

222
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Through the six years of ¡n-situ measurement, this research project has

generated a pre-melt snow cover database that is one of the most spatially

comprehensive compiled over a Canadian open tundra environment.

3.3.5. Meteorological Data

Meteorological data were obtained from a station located near TERS which is

maintained by Mr. Bob Reid of the Department of Indian and Northern Affairs Canada

(INAC). Of interest were air temperature, soil temperature, wind speed and direction.

The data were used to identify any days where the air temperatures were above zero.

As outlined in Chapter 2, any melting of the snow would produce liquid water which

would complicate the retrieval of snowpack information with passive microwave data.

Similarly, the soil temperature data were used to note whether or not the ground was

completely frozen.

During each of the end of winter surveys, the soil temperature was well below

zero and often much colder than the air temperature (-10 to -2O0C). This is important to

note as any difference in observed Tb should not be caused by liquid water in the soil.

The air temperature was much more variable and ranged from - 35 to + 60C. When the
temperature was above zero, radiometer data were no longer collected, and snow

sampling with ESC 30 tubes became much more difficult. Fortunately, above zero

temperatures did not persist for more than a day or two during any of the field

campaigns.

Wind speed and direction were also available and could be used for future

comparison with seasonal snow accumulation patterns. However, none of the survey

years has continuous wind data due to the INAC station being powered by solar panels.

During the early winter, through December to February, there are often significant gaps

in the data due to the reduction in daylight hours.
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3.3.6. Ground Based Passive Microwave Radiometer Data

Ground based passive microwave brightness temperature data were collected in

2005 and 2007 using Environment Canada's Surface Based Radiometer (SBR) system.

The SBR has both vertically and horizontally polarized of radiometers at 6.9, 19, 37 and

89 GHz which are mounted at 53 degrees look angle (Asmus and Grant, 1999) (Table

3.4).

Table 3.4. Summary of SBR instrument characteristics

Frequency (GHz)
Bandwidth [MHz]
Sensitivity [K]
Accuracy [K]
Beam width [°]
Look angle [°]

6.9
500
0.2
<2

53

19
1000
0.04
<2

53

37
2000
0.03
<1

53

89
4000
0.08
<1

53

The spatial footprint of the radiometers mounted on the SBR is dependent on the

instrument beam width and the height mounted above the surface. The footprint of the

radiometers is elliptical in shape and outlined in Table 3.5.

Table 3.5. Footprint dimensions for SBR radiometers

6.9 GHz 19GHz 37GHz 89GHz
Near width (m) 0.48 0.33 0.33 0.33
Far width (m) 0.59 0.37 0.37 0.37
Depth (m) 0.88 0.58 0.58 0.58

Before and after deployment at Daring Lake, the microwave radiometers were

calibrated in Yellowknife for conversion of voltage output to brightness temperature

(Walker et al., 2002). A two-point calibration technique was used with an ambient

temperature microwave absorber as the "warm" reference and liquid nitrogen as the

"cold" reference. The liquid nitrogen calibration technique has been described in Solheim

(1993). Unfortunately, no post deployment calibration was available during the 2007

deployment; however, drift values were assumed to be similar to those obtained during

extensive calibration of the instruments on the aircraft platform during 2005 and 2006.
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During these campaigns, instrument drift was observed to be approximately +/- 8 K at
6.9 GHz, +1-2 K at 19 GHz, < 1 K at 37 GHz, and +/-4 K at 89 GHz. The instrument drift

is considered acceptable for ground based radiometer measurements (Lemmetyinen et

al., in press).

3.3.7. Airborne Passive Microwave Radiometer Data

Airborne passive microwave brightness temperature data were obtained from

radiometers mounted aboard the National Research Council Twin Otter aircraft

(MacPherson et al., 2001). The radiometers mounted to the aircraft are the same units
used in the SBR system summarized in Table 3.3. The radiometers are mounted to a

special door on the aircraft and acquire data at an incidence angle of 53 degrees.
With the airborne system, the spatial footprint is a function of aircraft altitude.

During the 2005 field season, multiple overpass flights were made along all north -

south and east - west grid lines in the 25 ? 25 km study domain (Figure 3.4). Data were

collected with the aircraft at three flying heights of 277, 828 and 2207 m. During the

2008 campaign, flights were conducted along flight lines at two flying heights of 277 m

and 2757 m (Table 3.6).

Table 3.6. Summary of flying heights and radiometer footprint dimensions

Aircraft
Altitude 6.9 GHz

Radiometer Footprint
19GHz 37GHz 89GHz

277 m Near width (m) 66
Far width (m) 81
Depth (m) 121

45
52
80

45
52
80

45
52
80

828 m Near width (m) 197
Far width (m) 243
Depth (m) 363

135
155
241

135
155
241

135
155
241

2207 m Near width (m) 524
Far width (m) 646
Depth (m) 970

360
414
642

360
414
642

360
414
642

2757 m Near width (m) 655
Far width (m) 808

450
517

Depth (m) 1211 802

450
517
802

450
517
802
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The data acquisition system in the aircraft collects Tb data with an integration

time of approximately one second. The actual footprint size is wider than shown in Table
3.6 because of the distance the aircraft travels in that one second. The aircraft travels at

roughly the same speed for each of the data flights so the added footprint width of ~ 45
m is the same for each altitude. As such, the added width is most pronounced in the 277

m and 828 m data and for input into the GIS, these data were adjusted.

Before and after each flight, the radiometers were calibrated at the Yellowknife

airport for conversion of voltage output to brightness temperature (Walker et al., 2002).

The two point calibration technique described in Section 3.3.5 was also used for the

aircraft data. However, one complication with calibrations in Yellowknife was the

influence of radio frequency interference (RFI) on the 6.9 GHz instrument. RFI in urban

environments is a result of telecommunication towers which transmit signals at

frequencies close to 6.9 GHz, and is observed globally (Kidd, 2006). RFI was not

observed on flights over the study area; however, it did complicate calibration and would

severely limit the use of low frequency radiometers in more populated areas. RFI was

not observed during calibrations obtained during an aircraft campaign in Churchill,

Manitoba, in 2006, and the instrument was found to have uncertainly of 5 to 7 K in Tb

(Toose, 2007). Uncertainty in the high frequency radiometers ranged from +/-2K at 19

GHz, <1 K at 37 GHz, and +/-4K at 89 GHz which is consistent with calibrations done in

Churchill in 2006 and in previous campaigns summarized by Derksen et al. (2005) and

Lemmetyinen et al. (2009) . Estimates of error due to within-deployment receiver drift

were derived from a comparison of the pre and post calibrations. The error is

compensated for by adjusting observed Tb based on the calibration information using a

non-linear, multi-iterative process described by Toose (2007).
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3.3.8. Satellite Passive Microwave Radiometer Data

Satellite brightness temperatures were obtained from the Advanced Microwave

Scanning Radiometer - Earth Observing System (AMSR-E) sensor. Both horizontally

and vertically polarized brightness temperatures at 6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8
GHz, 36.5 GHz, and 89.0 GHz were downloaded from the National Snow and Ice Data

Center (NSIDC) by Environment Canada. AMSR-E instrument characteristics are

summarized in Table 3.7.

Table 3.7. Summary of AMSR-E instrument characteristics

Center Frequency (GHZ) 6.925 10.65 18.7 23.8 36.5 89.0
Bandwidth (MHz) 350 100 200 400 1000 3000
Sensitivity (K) 0.3 0.6 1.1
Mean Spatial Resolution
ß

60 38 21 24 12 5.4

IFOV (km) 74x43 51 ? 30 27x16 31 ? 18 14x8 6x4

The swath data were converted to the EASE grid format by the NSIDC, so they

could be spatially standardized over the multiple years of the project. Swath data are

useful because the original frequency dependent imagining characteristics are retained;

however, geolocation errors can occur between satellite overpasses. For example, Poe

and Conway (1990) found that for the SSM/I sensor swath geolocation error can be as

high as 20 km but can be corrected to around 7 km. The AMSR-E swath location is

somewhat more accurate, but geolocation errors do exist between multiple years of

data. Hence, EASE grid data are a much better source for the compilation of a Tb time

series (Derksen, 2008). AMRS-E data were acquired for the November to April periods

during each of the years in which snow cover data were available (2003 to 2009).
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3.4. Data Summary

For each year from 2003 to 2009, meteorological observations and AMSR-E

satellite Tb were obtained. Data collected in the field varied somewhat from year to year

and are summarized in Table 3.8.

Table 3.8 Summary of field data collected

Survey Year Data Sets
2003 Preliminary snow survey in sub-basin of Daring Lake
2004 Snow survey throughout the study area
2005 Snow survey throughout the study area

Airborne radiometer flights throughout entire study area
Preliminary deployment of ground based radiometers
Snow survey throughout the study area2006
Snow survey throughout the study area
Site surveys and transects with ground based radiometers

2007

2008 Snow survey throughout the study area
- Airborne radiometer flights along 75 km of transect
- Over 40 km surveyed with automated snow probe along flight line
transects

2009 Snow survey throughout the study area
Over 15 km surveyed with automated snow probe along transects

The amount of data collected is certainly unprecedented for the Canadian tundra.

The scope of this thesis does not allow for a complete analysis of all of the data.

However, the data set will provide many opportunities for tangential projects and

certainly will prove to be a solid foundation for future research in this area.
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CHAPTER 4: Distribution and Properties of Tundra Snow Cover

4.1. Introduction

Snow cover data can be generated for large spatial domains by using distributed

models and through remote sensing techniques. However, regardless of how rigorous

modeling and remote sensing algorithms may be, they must still be tested against

accurate data sets to ensure realistic results (Foster et al., 1996). As such, the validity of

model and remote sensing outputs is limited by the reliability of snow cover data. Given

the important linkage of snow to physical systems (Section 1 .3) and the spatial and

temporal discontinuity of current data sets, there exists a need for developing intensive,

tundra-specific snow cover data. These data are necessary in order to meet the

objectives outlined in Section 1 .4 and would be a valuable contribution to many other

areas of research. The purpose of this chapter is to establish a more complete

understanding of tundra snow cover through the multiple years of late winter, spatially

intensive, pre-melt in-situ snow cover measurements introduced in Section 3.3.3. These

data will be used in order to provide the following:

a) A detailed description of tundra snow cover distribution and variability within

the 625 km2 study area;

b) A means for extrapolating point observations to EASE grid resolution (25 km)

for comparison with satellite passive microwave data (Chapter 5);

c) A basis for comparison of in-situ snow cover data with multi-scale airborne

and ground based passive microwave data (Chapter 6);

d) A foundation of data to contribute to the development and validation of

operational spaceborne passive microwave algorithms (Chapter 7).
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4.2. Tundra Snow Cover Distribution and Properties

4.2.1. Introduction

The tundra landscape in the study area can be generally characterized as

regionally uniform, devoid of dense forests and significant relief features. However, the

gentle undulating hills, intricate post-glacial features, lakes, and rugged rock outcrops

produce very complex local snow accumulation patterns. It has been recognized by

many researchers that the patterns of tundra snow cover distribution are largely a

product of wind re-distribution and complex snow-terrain interaction (Woo and Marsh,

1978, Pomeroy et al., 1997, Woo, 1998, Sturm and Liston, 2003, Hirashima et al., 2004,

Essery and Pomeroy, 2004, Woo and Young, 2004). Snow redistributed by varying wind

speed and direction interact with micro and macro topography, frozen lake surfaces,

emergent vegetation and boulder outcrops to produce highly variable snow cover

patterns. During each of the field surveys, the snow cover throughout the study area was

found to be generally heterogeneous across the landscape. Thus, assuming a single

grid-cell value for any given snow property would not encapsulate the complex snow-

terrain accumulation patterns. As such, in order to define complex sub-grid snow cover

information, it is necessary to consider the effects of different terrain types on snow

accumulation. To meet this objective, a terrain classification, described in Section 3.3.2,

was developed to stratify the study area into different terrain categories. This approach

should be useful for the compression of large complex data sets and for the inference

and extrapolation to areas not directly sampled (Sturm et al., 1995). Furthermore, the

terrain categories developed were useful in guiding the snow surveys during each year

and form the basis for reporting and discussing snow cover parameters throughout this

chapter.
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4.2.2. Snow Cover Properties

As outlined in Chapter 1 and 2, the important snow cover parameters to observe

are snow density, depth, SWE and general snowpack stratigraphy. Each parameter will

be discussed both within and among the multiple years of snow surveys.

4.2.2.1. Snow Density

As outlined in Section 3.3.3, snow density was measured five times at each site

using an ESC snow corer and a hanging balance. The five measurements were used to

derive a site mean density. The site means were then binned according to terrain

category, and a mean for each category was generated. The terrain category means for

each year were then plotted along with one standard deviation (Figure 4.1).
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Figure 4.1. Snow density on lakes, flat tundra, plateaus (a) and slopes both low (b)
and high (c), during the 2004 to 2009 snow surveys. The heavy center lines and
circles represent the mean while the range of values is one standard deviation.
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Figure 4.1 shows that snow on lakes had the highest density of all the non-slope

areas during each year surveyed. Snow on flat tundra was found to be less dense than

lakes but consistently denser than the thin, wind-scoured snow found on upland

plateaus. However, the density of snow on slope areas was quite variable among slope

aspects in each survey year and when comparing different years. In some cases, the
snow on steeper slopes was denser than on shallower slopes; however, this was not a

consistent relationship year-to-year. In general, snow on slopes was found to be denser

than on flat tundra or upland plateaus.

Based on the data shown, there appears to be increasing density from 2004 to

2007 and towards decreasing density from 2007 to 2009. The mean density of all

measurements taken in 2004 was 0.288 g/cm3 (± 0.067 SD); in 2005, it was 0.298 g/cm3
(± 0.071); in 2006, it was 0.31 1 g/cm3 (± 0.033 SD); in 2007, it was 0.322 g/cm3 (± 0.038
SD); in 2008, it was 0.295 g/cm3 (± 0.042 SD); and in 2009, it was 0.245 g/cm3 (±0.048
SD). It is assumed that annual differences in density are dependent on the magnitude

and direction of wind, on the timing of high wind speed events relative to snowfall

events, and on the crystal characteristics of falling snow. These relationships, although

apparent from anecdotal evidence, are difficult to quantify in remote regions without

including detailed weather and blowing snow observations. Unfortunately,

meteorological data for the entire winter are not currently available for the study area.

The standard deviation in density appears to decrease from 2004 through 2009.

This pattern may be real; however, the decrease in standard deviation from year to year

may at least be partially explained by the improvement of field personnel at sampling

density. Using snow tubes for sampling can produce error when some of the sample falls

out of the bottom of the tube. This significantly reduces the weight of the sample for a

given depth, and erroneous densities are recorded. As the proficiency in sampling

density increased over the years, there was more attention given to obtaining a complete

93



sample ¡? the tube. Hence, the variability in density was inadvertently reduced.
Furthermore, the scales used to measure the weight of each core sample were of better

quality during the 2006 through 2009 survey years. This allowed for more consistent

sampling among different personnel.

Despite these factors, density seemed to be more inter-annually consistent and

predictable compared to other snow cover parameters. The only exception was the 2009

season where the density appeared to be and was in fact lower than in previous years.

In order to determine if density is consistent from year to year, the difference between

the means needs to be tested. For normally distributed data, one-way analysis of

variance (ANOVA) tests is typically used for this purpose. The average density for each

site was plotted on frequency histograms to demonstrate the normality of the data

(Figure 4.2).
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Figure 4.2. Frequency histograms of site density

An ANOVA determines if there are statistically significant differences between

groups. However, when there are multiple groups, the ANOVA is not the final step as it

does not indicate which groups are different from each other and by how much. For this,
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post-hoc tests are used. It is important to note that post-hoc tests are not appropriate if
the ANOVA F is not significant, meaning that there are no differences between any of

the groups. Determining which post-hoc test is most appropriate depends on the equality

of group ? as well as the homogeneity of variance between groups. To test for

homogeneity of variance the Leveens statistic is used. In snow density dataset, the

number of samples are not exactly the same each year, and the Leveen's statistic (p <

0.001) indicated that the variance in density between years is not equal. As such, a

Games-Howell (GH) multiple comparison post-hoc test was chosen to be most

appropriate. The GH test was developed specifically for data with both unequal

variances and unequal sample numbers (Games et al., 1983). The GH test is preferred

over other tests which assume equality of variances and/or equal group sizes. If these

assumptions are violated, it can lead to an increased chance of making Type I errors

and adding a liberal bias to the significance values (Morgan et al., 2004). The GH was

used to perform a pairwise comparison of the mean densities to determine specifically

which years were significantly different from each other. The test provides the direction

and magnitude of the mean difference in addition to showing groups with significant

differences (Table 4.1).

Table 4.1. Difference of mean density for each survey year

Mean Difference

2004
2005
2006
2007
2008
2009

2004 2005
-0.011

2006
-0.024
-0.013

2007
-0.036
-0.025
-0.012

2008
-0.008
0.003
0.016
0.028

2009
0.042
0.053
0.066
0.077
0.049

Indicates the mean difference is significant at 0.05

For most of the years, the mean densities were significantly different. The years

not significantly different were 2004-2005, 2004-2008, 2005-2006, and 2005-2008. Of
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interest were 2007 and 2009, which were significantly different from all other years. In

2007, the mean density was significantly higher than all other years; while in 2009, the

mean density was significantly lower than all others. The next step would be to conduct

a more detailed investigation to examine the mean difference between each terrain type

within each year. However, this level of analysis will be reserved for SWE as it is

calculated using both depth and density.

Despite the significant difference between most of the yearly mean densities

shown in Table 4.1 , the qualitative perspective from field observations is that there is not

that much variability in density from year to year. This can be tested by calculating an

overall mean density derived from all measurements taken over the six years of field

surveys (n = 6375). The mean density from all years is 0.294 g/cm3 (± 0.053, CV 18).
This regional density of 0.294 g/cm3 is lower than the 0.380 g/cm3 from the general snow
classification by Sturm et al. (1995) however it compares more favorably to densities of

0.285 g/cm3 and 0.277 g/cm3 measure in on northern Alaska tundra by Sturm and Liston
(2003).

To quantify the inter-annual consistency in density and the applicability of an

overall mean density, a GH test was used to see if the mean of 0.294 g/cm3 is
significantly different from the mean density for each year (Table 4.2).

Table 4.2. Difference of mean density from each year
compared to overall mean density

Mean Difference
2004 2005 2006 2007 2008 2009

Mean Density 0.294 0.007 -0.004 -0.017 -0.029 0.000 0.049

Indicates the mean difference is significant at 0.05

The overall mean density of 0.294 g/cm3 was not significantly different than the
mean density of measurements taken in 2004, 2005 or 2008. The densities during 2006

and 2007 were significantly higher, while density in 2009 was significantly lower than
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0.294 g/cm3. The greatest difference is in the 2009 density which is nearly 0.050 gm/cm3
lower than the overall mean of 0.294 g/cm3. Excluding the 2009 season raises the

overall mean to 0.305 g/cm3.

The applicability of an overall mean density of 0.294 g/cm3 was further evaluated
by comparing it to measurements made on a site-by-site basis. Estimated SWE were

calculated by using the depth measurements of a given site and the overall mean

density of 0.294 g/cm3. These estimated SWE were then plotted against measured SWE
which was calculated using both depth and density measurements made at a given site.

In a sense, by comparing these two values, the validity of the regional average can be

determined independent of terrain type on a site-by-site basis (Rees et al., 2005).

Estimated SWE were correlated against measured SWE for each of the survey years

and plotted on scatterplots (Figure 4.3).
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Figure 4.3. Comparison of estimated SWE (calculated using multi-season regional
average 0.294 g/cm3) and measured SWE (calculated from

in-situ measurements) for each of the survey years

Figure 4.3 shows that there are very strong and significant (p > 0.000)

relationships between estimated SWE and measured SWE. This shows that a multi-

season overall mean density of 0.294 g/cm3 produces SWE values which do not deviate

very much from the measured SWE calculated at each site. More deviation and a

greater uncertainty are noted in the higher measured SWE values of each season.

These SWE are always recorded on steep slopes which have a higher bulk density in

comparison to snow on flatter terrain. As a result, the measured SWE on slopes is

underestimated when a regional density is used. Similarly, lower SWE values,

associated with thin or newly deposited snow on upland plateaus or small lakes, have a

lower density. In these areas, measured SWE is slightly overestimated using the overall

average. The results shown in Figure 4.3 are important because they highlight the fact

that tundra snow density is not all that variable when considered on a site-by-site basis

between different terrain types and from season to season. As such, the regional

average density of 0.294 g/cm3 can be applied, and on most terrain types, snow depth
could be a used as a proxy for SWE.
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4.2.2.2. Snow Depth

Snow depth was measured at each site as described in Section 3.3.4.2. Mean

snow depth was calculated for each site by taking the average of the 30 probe

measurements. Site means were then binned according to terrain categories, and a

mean for each category was generated. The terrain category means for each year were

then plotted along with one standard deviation (Figure 4.4, 4.5 and 4.6).
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Figure 4.4. Snow depth on lakes and flat tundra during the 2004 to 2009 snow
surveys. The heavy center line and circle represent the mean
while the range of values is one standard deviation.

Snow depth on flat tundra, lakes and plateaus was found to be greatest in 2004

and 2006 and least in 2005 and 2009. Furthermore, the data show some interesting

relationships among the different terrain categories. For example, lake sites appear to be

the least variable in terms of standard deviation of snow depth and had consistently less

snow compared to flat tundra. The least amount of snow depth was found on upland

plateaus during each year due to the removal of snow by wind.

The standard deviation of snow depth on flat tundra and lakes appears to be

greater in lower snow depth years of 2005, 2007, and 2008 than in 2004 and 2006. This

was also apparent while conducting the snow surveys. The greater variability in low
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snow years can be partly explained by the influence of emergent vegetation. Vegetation

traps drifting snow and prevents movement (saltation) of snow grains until it is covered

to within 5 cm of its stem tops at which point drifting resumes (Pomeroy, 1997).

However, in higher snow years, the vegetation becomes completely buried, there is little

interaction, and a much more uniform snow surface develops. On lakes, during lower

snow depth years there is also more variability. This occurs because without sufficient

snowfall, areas of bare ice remain uncovered and are perpetually wind-scoured

throughout the season, and snow is continually being moved onto adjacent drifts. The

presence of bare ice adjacent to snow drifts at a given site produces a greater range of

snow depth and more variability in the mean. An exception to this was the 2009 data

which show low snow depths but also relatively low standard deviation which may be

due to little wind action preceding the 2009 survey.
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Snow on slopes was found to be deeper than on other terrain categories due to

the increased accumulation in the lee of topographic features and in areas of dense

vegetation often found on slopes. On windward slopes, snow depths were similar to or

lower than on flat tundra and lakes. There was more snow accumulation on slopes

steeper than 7 degrees, independent of aspect. However, there was no consistent

relationship year to year in terms of which slope aspect had the most snow accumulation

and highest snow depth. The accumulation of snow on different slope aspects is most

likely a function of predominant wind direction during a given season, or during storm

events.

Snow depths on slopes were much more variable both from year to year and

when compared to other terrain types. Similar observations were made by Woo and

Young (2004) in that deep snow drifts on slopes tend to be most variable and have

larger standard deviations. This further shows how topography exerts a strong control on

snow deposition patterns. Steeper slopes typically have more depth than shallower

slopes due to rapid deposition of snow in the lee of a sharp or steep slope break.

However, snow on shallow slopes does not accumulate in as short a distance behind the
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slope break. This means that snow accumulation is controlled more by sub-surface
micro-topography such as boulders and vegetation (Figure 4.7).
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Figure 4.7. The general patterns of snow accumulation
on steep and shallow slopes.

Due to the complex relationships between slope angle, aspect and surface

roughness throughout a large basin, it is difficult to generalize and anticipate snow

accumulation patterns. Therefore, some of the variability in slope snow depth is a

product of the broad categories used in the classification. Fortunately, slope areas

occupy a relatively small percentage of the total landscape. Employing a more complex

classification to encompass all possible iterations of slope properties would be

impossible to sample in all but very small study areas.

4.2.2. 3. Snow Water Equivalent (S WE)

As outlined in Section 3.3.3, site SWE can be determined in two different ways.

The first uses the average of the five ESC 30 measurements directly (weight of the snow

cover divided by 30), while the second uses the mean of 5 densities calculated from the

ESC snow core multiplied by the mean of the 30 depth probe measurements. A potential

issue with the latter method is that uncertainty can accumulate when multiplying a site

average depth (n = 30) and site average density (n = 5). The alternative would be the
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first option which uses the average of the five SWE measured directly from the ESC 30.

In theory, this might reduce potential uncertainty in the calculation of site SWE.

However, using only five core measurements might not capture as much of the variability

in snow depth at a given site as do the 30 probe measurements. A plot of SWE

calculated using the two methods was generated for comparison. Data from the 2007

season were used as an example because 2007 had the highest number of sites visited

(Figure 4.8).
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Figure 4.8. ESC 30 SWE compared to site average (depth ? density) SWE

Figure 4.8 shows that below 150 mm the relationship between the two methods

is quite good (close to 1:1) and fairly well correlated (r= 0.73, ? < 0.05). As the depth of

SWE increases (> 150 mm), the correlation remains strong (r = 0.74, ? < 0.05); however,

the difference between the two methods becomes greater (further from 1:1). Above 150

mm of SWE, the ESC core-only method begins to underestimate in comparison to the

probe depth and mean density SWE method. This occurs because the ESC 30 core tube

cannot collect measurements of snow depth beyond 130 cm. As a result, using the ESC

30 alone, site SWE cannot be measured when the snow depth exceeds 130 cm. At sites
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with greater than 130 cm depth, cores are taken in areas with less than 130 cm depth
and the measurements are assumed to be representative of snowpacks deeper than

130 cm. In some cases at deep snow sites, more than 130 cm can be sampled by

stacking two or more core measurements vertically in an excavated snow pit. However,

using this technique is difficult and often cores are not retained in the tubes. The snow

probes, however, are extendable to beyond 4 m and provide a much better estimate of
snow depth.

Using the mean of 30 snow probe measurements along with the five densities

from the ESC cores produces a much higher sample size (n = 35) than using the cores

alone (n = 5). Despite the good correlation between the two methods, it is assumed that

using the higher ? of the probe/density method would provide more statistically

significant results and representative site SWE estimates. However, it is interesting to

note that using only 5 ESC cores to record SWE on snow packs with less than 150 mm

SWE would still provide fairly representative data.

For the rest of the data, site mean snow depths from the 30 probe measurements

were combined with site mean snow density from the five ESC 30 cores to derive site

SWE. The site mean SWE were then binned according to terrain categories, and a mean

for each category was generated. The terrain category means for each year were then

plotted along with one standard deviation (Figure 4.9, 4.10 and 4.1 1). Since SWE is

calculated using both depth and density, the standard deviation in SWE is calculated

using the following formula:

STDEVSWE = (sqrt (STDEVDEPTH/ Mean Depth)2 + (STDEVDENSITY/ Mean Density)2
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Not surprisingly, the patterns of SWE from year to year and among different

terrain categories are very similar to those of snow depth. However, certain relationships

are more prevalent due to differences or similarities in both density and depth between

terrain types. For example, the difference in SWE between lakes and flat tundra

becomes less pronounced than when considering snow depth alone. The lower depth of

snow on lakes is dampened by the higher density of snow on lakes compared to flat

tundra. Similarly, the difference between slopes and non slopes becomes more

pronounced as slopes often have both higher depth as well as density.

The discussion of snow cover beyond this section will focus on SWE as it

considers both depth and density, is a parameter of interest in many other disciplines,

and is estimated through passive microwave remote sensing. The inter-annual patterns

in SWE will be discussed in Section 4.2.3, while the variability in SWE will be further

investigated in Section 4.3.
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4.2.2.4. Snow Stratigraphy

Snow stratigraphy refers to the internal vertical structure or layering within a

snowpack. This structure is important to consider when using passive microwave remote

sensing as the total emission from a snow volume is influenced by many factors,

including snow depth, SWE, snow density, liquid water content and snow grain size

(Foster et al., 1980). The variability in snowpack structure is often considered as a

source of disagreement between surface measurements and passive microwave SWE

data (Derksen et al., 2005). Furthermore, end of winter tundra snowpacks can be

dominated by large grained depth hoar which can greatly influence passive microwave

estimates of SWE (Section 2.4.2.1.1). Thus, in the context of this project, it is necessary

to have an understanding of tundra snowpack stratigraphy throughout different terrain

categories.

The properties of tundra snow are described in a general snow cover

classification by Sturm et al. (1995). Data used to test the classification were derived

primarily from northern Alaska. Tundra snowpack stratigraphy is described as being thin,

cold, wind-blown snow with a basal layer of depth hoar overlain by multiple wind slabs,

and a depth range of 10 -75 cm (Figure 4.12).
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Figure 4.12. Basic tundra snow stratigraphie and textura! attributes
(adapted from Sturm et al., 1995).
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The depth ranges observed in the field (Figures 4.4, 4.5 and 4.6) do not exceed

the maximum of 75 cm except on slopes where snow deposition has been enhanced by

wind-redistribution. Furthermore, the mean snow depth (± 1 STDEV) did not exceed 75

cm on flat tundra in any of the years surveyed. The general snow stratigraphy outlined in

Figure 4.12 is a good general approximation of the snow pack structure observed in the

field.

At all sites during each year (with some exceptions), there was a well developed

wind slab layer at the top of the pack. The layering below the surface consisted of older,

buried wind slabs and intermediate layers in various stages of snow grain

metamorphosis. The presence of old wind slabs within the pack acts to impede vapor

transport and produce depth hoar like grain growth above the base of the snow pack.

These layers, while not traditional depth hoar, have been thought of as a form of

suspended depth hoar. The traditional basal depth hoar layer usually occupied a

relatively small fraction of the snow pack. This is because depth hoar forms primarily

from early season snow deposited between vegetation outcrops or tussocks (Sturm and

Benson, 1997).

Subsequent snow and wind events form slabs on top of this early season snow.

This effectively caps the development of depth hoar at the bottom of the pack which

limits grain growth to the 3 - 6 mm range (Sturm, personal communication). Wind events

with concurrent snowfall tend to produce a network of softer snow dunes while wind

events without subsequent snowfall produce the dense surface slab layers. Both layers

will eventually undergo kinetic growth throughout the season and become somewhat

similar to depth hoar. However, the layers which were formerly wind slabs are denser

and more cohesive than depth hoar found at the base of the pack. These transformed

layers, which were originally wind slabs and are unique to tundra snow, have been

termed indurated hoar (Derksen et al., 2009).
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Tundra snow stratigraphy exhibits a large degree of site to site heterogeneity due

to the complexity in snow deposition, redistribution, and underlying macro and micro

topography. Nonetheless, throughout the years, there appear to be some general snow

pack properties common to the different terrain types (Figure 4.13).

Bulk Density
Density Profile _$>
Wind Slab
Kinetic Grains
Depth Hoar

Q i/>

8o?,<y

Density (g/cm )
Figure 4.13. Generalized snowpack stratigraphy on different terrain types.

Upland plateaus had the lowest snow depth and also the simplest snow

stratigraphy. The vertical structure consisted of low density depth hoar crystals (grain

size 2-3 mm) overlain by a relatively thin wind slab (grain size 0.5 mm). The depth hoar

layer developed in areas sheltered from the wind. This was typically in between micro-

topographic features or amongst ground cover present at the site. On vegetated

plateaus, the hoar crystals developed in the shelter of grasses, hummocky lichens or

dwarf birch shrubs where soil moisture is likely elevated. On rocky plateaus, the depth

hoar developed more prominently where sheltered in the lee of boulders or rock

outcrops. However, the perpetual removal of snow from upland plateaus clearly limited

the development of more complex stratigraphy beyond the sheltered areas.
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The snow stratigraphy on lakes was clearly different from that on land. On lakes,

there was a much lower percentage of depth hoar, and there was frequently no evidence

of any hoar crystal growth. As a result, the density profile of snow on lakes was more

uniform, and the density throughout the pack was very similar to the bulk density.

Furthermore, frozen lakes are typically more exposed to wind from all directions and

have a much lower surface roughness than that of land. As such, lakes typically had a

greater proportion of wind slab layers (grain size 0.5 mm). At some sites, there was
evidence of kinetic crystal growth in layers between wind slabs. These indurated layers

had grain sizes larger than typical wind slabs (from 0.5 to 1 mm). The stratigraphy of

lakes was essentially alternating layers of wind slabs with little difference in density from

the top to the bottom of the snow pack.

At flat tundra sites, the snow was typically deeper than on plateaus and lakes

and the stratigraphy was very similar to that described by Sturm et al. (1995). The nature

of the layering in the flat snow packs were determined in part by the type of ground

cover present below the snow. If the ground cover was more irregular in terms of

hummocks, rocks, or vegetation, then there would be more depth hoar development in

amongst these features (grain size 2-4 mm). The highest proportion of depth hoar and

largest grain sizes were found at sites which had the tallest vegetation, usually dwarf

birch shrubs (grain size up to 8 mm). In all cases, the snowpack above the depth hoar

consisted of alternating layers of indurated less densely packed kinetic grains (grain size

0.5 to 2 mm) and denser wind slabs (grain size 0.5 mm). On depositional slopes, the

snow depth was greatest, and the snowpack had a higher number of alternating layers

of kinetic grains and wind slabs. However, the proportion of depth hoar on slopes was

still largely driven by the type and height of ground cover.
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Despite some differences from site to site and from year to year, the

generalization of the characteristics and differences between terrain categories outlined

in Figure 4.13 provides a useful summary of tundra snow stratigraphy. These general

properties could certainly be extrapolated over large study areas. Furthermore, it is clear

that both terrain and ground cover play important roles in the development of snow

stratigraphy at each individual site. Moreover, a general classification of these attributes

is necessary for application to regional scale models and remote sensing techniques.

4.2.3. Inter-annual Patterns in SWE

Flat tundra is the most spatially expansive and easily defined terrain category

throughout the study area. As such, examining the relationship of SWE between flat

tundra and other terrain categories would be useful in order to identify any differences or

consistencies in the inter-annual tundra patterns of snow distribution on terrain

categories. For example, if the ratios of SWE between terrain categories are consistent

from year to year, then it would become much easier to extrapolate snow cover patterns

over larger areas and into the future. Similarly, data acquired from future in-situ surveys,

meteorological stations, or satellite sources could provide an estimate of SWE on flat

tundra, and if consistent ratios exist, then SWE could be extrapolated to other terrain

categories through the region.

Section 4.2 showed how the depth of SWE observed on the different terrain

categories can be quite different from year to year. Nonetheless, there seem to be some

general consistencies in the difference in SWE between certain terrain categories.

Hence, at first glance, it appears that certain inter-annual similarities in the ratio of SWE

between terrain categories do exist. To display this more clearly, the ratio of SWE

between the flat tundra categories and SWE on all other terrain categories was plotted in

Table 4.3 using the following formula:

Ratio = SWE other terrain unit / SWE flat tundra
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Therefore, ratio values below 1 indicate that, for the given year, SWE in that

particular terrain category is less than on flat tundra. Ratio values above 1 indicate that

SWE in that terrain category is greater than on flat tundra.

Table 4.3. The ratio of SWE on flat tundra to SWE on all other terrain categories

Plateau
Flat
Lake
SLOPES
North - Low
North - High
East - Low
East - High
South - Low
South - High
West - Low
West - High

2004
0.52
1.00
0.79

2005
0.61
1.00
0.79

2006
0.60
1.00
0.74

2007
0.52
1.00
0.65

0.82
1.51
1.85
3.36
1.61
2.74
1.24
2.09

1.92
3.25
1.13
1.94
0.80
3.32
1.36
4.13

1.81
4.11
1.29
1.61
1.21
3.44
1.48
4.04

1.40
3.80
1.04
2.06
1.22
3.32
1.58
4.24

2008
0.42
1.00
0.67

1.00
2.22
1.20
2.92
0.90
2.41
1.08
4.33

2009
0.52
1.00
0.81

1.41
3.74
1.50
4.04
1.60
3.31
1.51
3.30

Table 4.3 shows that despite differences in parameters not measured or

compared (annual snowfall and seasonal weather patterns) and in the measured depth

of SWE, there are consistent ratios in SWE on flat tundra to other terrain categories. For

example, the ratio of SWE on flats to SWE on lakes and upland plateaus was found to

be fairly similar among the survey years. SWE on upland plateaus was consistently 39 to

58% less than on flat tundra. This makes sense as plateaus are exposed every year to

wind from any direction. As such, they are perennially blown free of snow compared to

flat tundra.

SWE on lakes was consistently 19 to 35% less than on flat tundra. Similar results

were observed by Sturm and Liston (2003). They found 18%, 25% and 38% less SWE

on lakes than on land during three years of observation on lakes of the Arctic Coastal

Plain and describe three main factors which contribute to this trend. The first is the loss

of early season precipitating snow into unfrozen lakes, second is the accumulation of

snow drifts along lake edges, and third, the depletion of snow-depth due to non-

112



equilibrium blowing-snow fluxes. All of these factors are applicable to the Daring-Exeter-
Yamba Basin as it is dominated by many lakes ranging from small ponds to very large

lakes (up to 300 km2). The presence of larger lakes, however, diminishes the amount of
snow trapped in drifts as there are fewer edges of lakes compared to a basin with many

smaller water bodies. Furthermore, larger lakes diminish the non-equilibrium blowing

snow conditions and, as such, were found to have deeper and more consistent snow

cover than smaller ponds, which are more prone to wind erosion (see Section 4.4.3).

The ratios of SWE on flat tundra to slope areas are less consistent as a result of

presumed differences in seasonal wind speed and direction during and following

snowfall events. On low slopes, there are between 0.80 and 1 .85 times as much snow

as on flats. On the dominant depositional slope features (the highest SWE), there are

consistently 3 to 4 times more SWE than on flat tundra, yet the aspect associated with

the highest depth of SWE relative to flat tundra does vary from year to year. This is most

likely a function of differences in wind speed, direction, and snowfall throughout the

season. West and south slopes, however, contain consistently more SWE than north

and east slopes.

Seasonal wind patterns have a well recognized influence on snow deposition

patterns. Wind-redistribution events involve 1) erosion of the snow surface, 2) horizontal

transport of snow, 3) snow deposition into drifts, and 4) in-transit snow sublimation

(Bowling et al., 2004). Many researchers have investigated and modeled the complex

relationships between the tundra landscape, snowfall, and wind velocity (Essery and

Pomeroy, 2004, Liston, 2004, Liston and Sturm, 2002, Pomeroy et al., 1997). These

models are quite useful for explaining and estimating snow accumulation patterns and

loss through sublimation throughout a winter season and would help explain the patterns

of SWE on slopes. Unfortunately there is not a continuous record of wind data available
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from the meteorological tower at Daring Lake. The tower is solar powered and is not
able to record data continuously through the winter months.

If a record of winter meteorological data did exist, there are two assumptions

which could be tested to quantify the relationship between seasonal wind patterns and

SWE. First, the years with greater average wind speeds should see a higher ratio of

snow located in drift features, and second, the dominant wind direction of redistribution

events should have an inverse aspect to slopes with the deepest snow drifts. The

verification of these assumptions would allow for the improved understanding of the

slope ratios in Table 4.3.

4.3. Variability in Snow Cover
4.3.1. Introduction

In many research fields, variability, which characterizes the degree of

heterogeneity within a given area, is often more useful to consider than parameters of

central tendency alone. This is certainly true in the context of this research project.

Section 4.2 showed the general trends in snow cover data among different terrain

categories both within and between different years. Furthermore, plotting these data

provided a good starting point for enhancing our understanding. However, visually

comparing the mean and standard deviation does not quantify variability which would be

needed in order to properly extrapolate the data over larger areas.

Of the three parameters outlined in Section 4.2, SWE is of the most interest as it

incorporates both depth and density and is the primary parameter estimated by passive

microwave remote sensing. Variability in SWE within coarse resolution grid cells is an

often overlooked point of discussion. However, it is necessary to examine this in order to

properly develop a dataset for algorithm and model development, testing, and validation.

As such, the following three aspects of the spatial variability of SWE in the study area

need to be determined:
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(a) Variability among different survey years at the study area scale

(b) Variability within survey years between different terrain categories

(c) Variability within different terrain categories between sites

Quantifying variability among different years at the study area scale will show how

SWE varies without considering differences in terrain. If the variability in SWE is high at

the study area scale, then it justifies using a terrain based classification and spatially

weighted mean to describe the sub-grid distribution of SWE. Examining the variability

within the survey years in different categories will demonstrate how SWE varies with
terrain. This will determine the effectiveness of the classification to separate unique

snow and terrain categories. Determining the variability within categories will define the

heterogeneity in SWE within supposedly uniform terrain categories. This will also test the
effectiveness of the classification and determine if the category structure is sufficient.

Moreover, the use of a weighted mean SWE will permit the quantitative comparison of

year to year snow cover patterns.

4.3.2. Variability between Survey Years

Assessing the variability among survey years is useful to determine whether or

not pre-melt tundra SWE is significantly different from year to year. The mean site SWE

data from each year were used together, independent of terrain category to create the

dataset. The normality and skewness of SWE in each year were assessed through the

plotting of frequency histograms (Figure 4.14).

115



a)

200 400 600 800
SWE (mm)

b)

0 200 400 600 800
SWE (mm)

C) d)

9¿ 40 Qj 40

200 400 600 800
SWE (mm)

0 200 400 600 800
SWE (mm)

e) f)

S> 40-^ Sí 40-

200 400 600 800
SWE (mm)

0 200 400 600 800
SWE (mm)

Figure 4.14. Frequency histograms of SWE for each of the survey years
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Figure 4.14 shows that the SWE data are uni-modal and skewed in a positive

direction towards higher values. This occurs because the higher SWE values, which are

a product of deposition on slopes, are not as abundant in the study area. The extent of

the skewness in the distributions indicates that the mean SWE for each year may not be

representative. This is because a simple arithmetic mean gives too much weight to

values which are not that frequent. This presents a problem in assessing variability with

measures of standard deviation and coefficient of variation as they assume a normal

distribution (Table 4.4).

Table 4.4. Descriptive statistics of yearly SWE (mm) data

Year Min Max Mean Std.
Deviation

Coefficient of
Variation (CV)

2009 194 12.3 462.7 97.8 77.9 0.79
2008 146 11.0 614.5 110.4 94.3 0.85
2007 256 24.0 934.0 131.0 117.9 0.90
2006 238 37.5 1130.2 182.3 163.5 0.89
2005 169 19.4 567.5 129.2 112.7 0.87
2004 242 6.3 889.2 151.2 152.1 1.00

Valid ?
(listwise)

146

The standard deviation and the coefficient of variation (CV) of SWE for each of the years

are inflated due to the positive skew in the distributions. The high CV in each year shows

that the standard deviation in SWE almost equals the mean when terrain categories are

not considered. The skewness of the SWE data makes the mean not necessarily

representative and inflates the variability. Hence some type of classification is required

to better define sub-grid SWE variability for comparison with modeled or satellite data.

Nonetheless, the distributions in Figure 4.14 show that there seem to be years of

relatively higher and lower mean SWE. However, comparing the frequency of a given

SWE is somewhat misleading. As described in Section 3.3.4.3, not all survey locations

were spatially co-incident from year-to-year. Furthermore, the total number of sites
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visited (?) each year was not the same. A direct comparison could only be made if all
data were collected from automated stations or recorded at fixed snow stakes which

remain in the same location from year to year. The data collected in this study are

randomly sampled within each of the terrain category strata. The sampling involved

collecting random depth and density measurements within representative terrain

categories. The lowest number of sites visited was 146, in 2008, which essentially

represents 4380 random depth (probe) and 730 random density (ESC 30 core)

measurements at sites within the 11 terrain categories. The SWE shown in Figure 4.14

are derived using all of these measurements in each year. As such, it may be argued

that the number of samples is sufficient for a statistical comparison without spatially co-

incident sampling locations. Moreover, even if site location were consistent from year to

year it would be impossible to replicate the placement of the 30 probe and 5 core

measurements. Due to differences in micro-topography and in seasonal drifting patterns,

quite a bit of variability should be expected within sites let alone between sites and from

year to year. Therefore, to examine the variability of SWE, the data need to be broken

down into different terrain categories within each of the years

4.3.3. Variability Within Survey Years Between Terrain Categories

Variability in SWE across the tundra is a function of the interaction of wind-

redistributed snow with the terrain and landscape. In theory, the amount of variability in

each terrain category would depend on the extent of this interaction. Figure 4.14 shows

that there can be differences in the distribution of SWE from year to year. Thus, there

are expected to be different weather patterns (snowfall and wind) between different

years. However, landscape (vegetation) and terrain (topographic) properties do not

change much on an annual or even decadal scale. As such, variability in SWE should be

similar in a given terrain category from year to year. The lowest variability should be

seen in categories whose patterns of seasonal snow accumulation are least affected by
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wind re-distributed snow. Variability should be greater in categories with terrain or

landscape features which would interact with blowing snow and highest in terrain

categories which preferentially accumulate snow under certain wind speed, wind

direction, and snowfall conditions. Essentially, the terrain category with the least number

of factors which interact with blowing snow should have the lowest variability, and those

with the greatest number of factors should have the highest (Table 4.5).

Table 4.5. Tundra terrain categories and the factors
that control snow cover distribution

Terrain Category Factors that control the interaction with blowing
snow

Expected
Variability

Lake

Flat Tundra

Upland Plateaus

Shallow Slopes

Steep Slopes

Lake Size and Orientation
Surrounding Topography
Fetch
Surrounding Topography
Fetch
Surface cover: vegetation, boulders
Micro topography
Surrounding Topography
Fetch
Surface cover: vegetation, boulders
Micro topography
Size of plateau
Surrounding Topography
Fetch
Surface cover: vegetation, boulders
Micro topography

¦ Slope Length
¦ Slope angle
¦ Slope aspect
Surrounding Topography
Fetch
Surface cover: vegetation, boulders
Micro topography
Slope Length
Slope angle
Slope aspect
Nature of Slope break

LEAST

t
MOST

Table 4.6 shows that lakes should have the least variability in SWE as they are

relatively simple landscapes. Flat tundra is also fairly simple but has different surface

covers which would influence snow accumulation. Plateaus are similar to flat tundra but

are more exposed to wind. Slope areas are expected to produce the most variability in
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SWE as there are more potential factors to interact with blowing snow. In order to verify

if the assumptions of Table 4.6 are correct, two questions need to be addressed. They

are 1) does variability in SWE change based on the number of factors which interact with

blowing snow, and 2) is the variability in SWE among different terrain categories similar

from year to year because the terrain does not change?

Variability in SWE can be most easily described using standard deviation, which

is a measure of the spread of data about the mean in the same units as the original data.

Standard deviation was used in Section 4.2.2 to visually show the general differences in

variability among different terrain categories. However, because standard deviation is a

measure of the spread about the mean, it is difficult to compare variability from one year

to the next independent of differences in the mean. The amount of SWE in any terrain

category is determined primarily by the amount of snowfall and the degree of wind re-

distribution throughout a given season. In order to isolate variability from the differences

in the mean SWE, and to provide a normalized measure of dispersion, the coefficient of

variation (CV) is used. The CV is expressed as the ratio of the standard deviation to the

mean. As such, the CV allows for a unitless comparison of the variability in SWE

between similar terrain categories throughout different years. A lower CV indicates that

there is less variability about the mean. If the CV is multiplied by 100, it can be thought

of as a percentage of variability in a given terrain category.

The CV of SWE and snow depth are often used in snow cover models in order to

describe variability within large scale grid cells. Liston (2004) describes how different

snow distribution categories, defined based on seasonal air temperature, wind speed

and topographic variability, can have inter-annually similar CV values. Table 4.6 shows

how variability should differ based on a number of factors. Hence, it can be assumed

that the variability (CV) should not change from year to year in a terrain category

because the factors that influence the pattern of snow accumulation and distribution are
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generally the same (Sturm et al. 1995, Liston, 1999). Based on these assumptions, a

global sub-grid SWE depth classification was developed by Liston (2005) (Figure 4.15).
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Figure 4.15. The North American portion of the global sub-grid
SWE depth classification by Liston 2005

Figure 4.15 shows that the study area is located in Category 5, the arctic tundra, which
has a mean CV of 0.40. In order to compare this value to the SWE data from the study

area and provide a measure of variability, the CV in SWE was calculated for each site

for each of the survey years. To summarize the data, the mean and STDEV of the CV
were also calculated for each terrain category during each year. The mean and STDEV

were also ranked from highest to lowest within each year to facilitate the comparison

between terrain categories within each year (Table 4.6).
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Table 4.6. The coefficient of variation of SWE
for each terrain category in each survey year

mean

CV

2004
I STDEV

CV
mean

CV

2005
rnk ¡ STDEV |mk

CV

2006
mean | mk | STDEV | mk

CV

2007

mean I mk|sTDEV| rnkCV I I CV
mean

CV
mk STDEV

CV
mean

CV
mk STDEV

CV
mean

CV

ALL
I STDEV

CV

Lakes
Flat
Plateau

0.37
0.37
0.71

0.14
0.14
0.29

0.35
0.47
0.61

0.11
0.18
0.18

0.29
0.33
0.46

0.09
0.07
0.14

0.43
0.35
0.64

0.20
0.10
0.16

0.39
0.35
0.62

0.15
0.10
0.14

0.30
0.35
0.56

0.13
0.10
0.15

0.36
0.37
0.60

0.05
0.05
0.08

Slopes < 8 deprees (LOVV)
North
East
West
South

0.62
0.58
0.59
0.59

0.21
0.19
0.14
0.23

0.37
0.47
0.48
0.50

0.14
0.15
0.18
0.18

0.35
0.38
0.33
0.46

0.13
0.11
0.07
0.14

0.64
0.56
0.48
0.44

0.16
0.25
0.20
0.09

0.45
0.43
0.47
0.47

0.17
0.19
0.15
0.16

0.49
0.45
0.49
0.40

0.14
0.16
0.14
0.14

0.49
0.48
0.47
0.48

0.12
0.08
0.08
0.06

Slopes > 8 degrees (HIGH)
North
East
West
South

0.70
0.50
0.64
0.71

0.21
0.23
0.18
0.24

0.35
0.59
0.33
0.41

0.07
0.21
0.17
0.08

0.27
0.34
0.31
0.46

0.07
0.10
0.05
0.14

0.44
0.47
0.41
0.47

0.21
0.17
0.12
0.17

0.37
0.49
0.35
0.38

0.12
0.12
0.11
0.11

0.45
0.32
0.35
0.20

0.07
0.06
0.12
0.14

0.43
0.45
0.40
0.44

0.15
0.10
0.13
0.17

Table 4.6 shows that there is a range in the mean CV for different terrain

categories both within and between different years. According to Table 4.5, the terrain

categories with fewer factors influencing snow distribution should have a consistently

lower CV. Lakes and flat tundra, which have the least number of influencing factors, had

consistently less variability than other terrain categories. This is evident when looking at

the rank (rnk) of mean CV. Out of 1 1 categories, the lakes are shown to be consistently

ranked as 7th to 10th least variable from year to year and 1 1th least variable in the mean

of ALL CV. Flat tundra had a very similar CV to that of lakes in all years, and these

surfaces were only separated by 0.01 in the mean of ALL CV.

Plateaus were expected to have the next lowest CV and especially lower than for

slopes. However, plateaus had the highest CV of all terrain categories in each of the

years. This is most likely due to the exposure to wind events from all directions which

would exaggerate the effect of surface roughness and micro-topography on snow

accumulation. The low SWE, or no SWE measured from wind scoured areas also has

the effect of inflating the CV. Small changes in low SWE values have a greater influence

on the CV than do similar changes at greater SWE. Nonetheless, the variability on

plateaus was high due to the contrast between wind scoured areas and adjacent small

drifts in the lee of rocks or vegetation (Figure 4.16).
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Figure 4.16. Upland plateau

Low slopes had a higher CV than flats or lakes in almost all cases. This follows
what was estimated in Table 4.5 based on the effect of blowing snow events on slope

SWE. However, contrary to Table 4.5, steeper slopes often had a lower CV than on

shallower slopes or on some flats or lakes. Despite the higher number of factors on

steep slopes, especially the pronounced effect of steep slope angles on snow
accumulation, it would seem as though SWE on steep slopes is more uniform than

expected. Variability on steep slopes is lower as they are often either consistently
depositional with deep drifts or consistently wind scoured. Furthermore, in the lee of
steep slopes, it does not take long before drifts accumulate enough depth to cover and
negate the effect of the underlying ground cover.

It is possible, however, that the lower CV on steep slopes may have more to do

with the low number of sites visited (Table 3.3). Moreover, there is also possible bias in

SWE sampling on steep slopes because on deep drifts it is difficult to establish the

precise start and end of the slope under the snow. As such, high slope areas are
identified and sampled based on the pronounced deposition of snow (deep drifts) and
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not on the underlying topography. This makes it difficult to establish a consistent

sampling scheme from slope to slope and, in some cases can lead inadvertently towards

a bias in measuring only areas of high SWE.

The ALL column in Table 4.6 shows the mean and STDEV in CV of all of the

years surveyed. The relatively low STDEV of lakes and flats means that the CV was

quite consistent from year to year and ranked 1 1th and 10th most variable respectively.
Similarly, the mean CV of plateaus was always higher than all other terrain categories

and ranked 1st as most variable in all years. The mean CV of low slopes was quite

similar from year to year but greater and with a higher STDEV than flats and lakes.

Steep slopes had similar mean CV values to low slopes but had the highest STDEV.

Table 4.3 demonstrated that the ratio of SWE on high slopes changed from year to year

presumably based on different seasonal wind patterns. As a result, the large STDEV in

ALL high slope CV from year to year was not surprising.

Table 4.6 is very useful in answering the two questions posed at the beginning of

this section. The ranking of variability in SWE in different terrain categories, described in

Table 4.5 is, with the exception of some steep slopes, more or less correct. Furthermore,

the variability (CV) in each terrain category is quite consistent and ranked in similar order

from year to year. This shows that despite the difference in mean SWE from year to

year, variability (CV) in a given terrain category is quite similar.

A final step is to derive a mean CV for the study area as a whole for comparison

with the CV of 0.40 from Liston (2005) shown in Figure 4.15. To derive a study area CV,

the mean CV for each terrain category from the ALL column of Table 4.6 was used. A

spatially weighted mean CV was calculated, as opposed to an arithmetic mean, because

it takes into consideration the proportion of each terrain category in the study area

(Table 4.7).
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Table 4.7. A weighted mean CV of all terrain categories and years surveyed

Lakes
Flat
Plateau

North
East
West
South

North
East
West
South

ALL
mean

CV
0.36
0.37
0.60

Percent
Study Area

36.7
25.6

2

Weighted
Mean

CV
0.13
0.09
0.01

Slopes < 8 degrees (LOW)
0.49
0.48
0.47
0.48

4.6
7.4
6.3

0.03
0.02
0.04
0.03

Slopes > 8 degrees (HIGH)
0.43
0.45
0.40
0.44

3.1
2.8
2.5
3.3

0.01
0.01
0.01
0.01
0.40

Table 4.7 shows that the overall weighted mean CV for the study area is 0.40.

This CV is exactly the same as the CV proposed for the arctic tundra by Liston 2005.

The remarkable agreement of the six years of data collected for this study with

previously published data is quite encouraging. However, it is important to remember

that within the study area, there have been large differences in CV among terrain

categories and from year to year. Nonetheless, the derivation of a study area weighted

mean is very applicable and useful for studies done at the scale of satellite passive

microwave data.

4.4. Snow Cover Classification

4.4.1. Introduction

The terrain based snow cover classification was developed as a first order

stratification of the study area to aid in field sampling and in providing a context for

defining sub-grid snow cover distribution. The different classes were developed based

on expected differences in snow distribution. As shown in Sections 4.2 and 4.3, breaking

down the snow cover according to terrain does seem to make sense. There do appear to

be differences in the depth of SWE and in variability among the different terrain

categories chosen. However, to this point little has been done to statistically test the

rigorousness of the classification scheme. The following section will evaluate the
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differences and similarities among the terrain based categories, determine an optimum

number of categories, and investigate whether or not the inclusion of landcover

information would improve the classification.

4.4.2. Terrain Classification

The terrain classification was conceived and generated prior to data collection in

the field. Hence, the 1 1 classes were chosen based on the expected patterns of snow

accumulation in the study area. As discussed in Section 4.3.2, the study area needs to

be broken down into different categories in order to better define the spatial distribution

of both depth of and variability in SWE. However, up to this point, there has been no

analysis to show how many categories are needed, or more specifically, whether the 1 1

pre-selected categories are appropriate to best define sub-grid SWE. In order to

determine the most efficient number of terrain categories in the classification, both

difference of means and equality of variance tests will be used.

4. 4.2.1. Difference of Means

The difference among terrain category mean SWE was tested. The ANOVA F for

each year was significant as was the Leveens statistic. This indicates that during each of

the years there are differences among the categories, and there are unequal variances

between the categories. Furthermore, from Table 3.3, the sample numbers in each

terrain category are not the same. As such, a GH post-hoc test was used to indicate

where the category SWE is significantly different from each other. The GH test produced

a pairwise comparison of the category mean SWE and determined the magnitude and

direction of any difference between the means. Because of the conservative nature of

the GH test, significant differences at 0.05 as well as 0.10 are shown (Table 4.8).
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Table 4.8. Difference of mean SWE (mm) between terrain categories within each
survey year, a) 2004, b) 2005, c) 2006, d) 2007, e) 2008, and f) 2009

a)
Mean Difference SWE (mm) 2004

E-LOW S-LOW W-Low W-HighP ateau N-Low
-61.8
126.4

-167.8
122.3
31.3

-2127
-277.3
-318.7
-273.2
182.2
50.9

-167.6
-232.2
-273.6
-228.1

137.1
105.8

45.1
115.1

19.2
-45.4

-101.7Flat
Lake

Plateau
North Low
North High
East Low
East High
South Low
South High
West Low
West High

106.0
41.4 117.1

207.7136.5
-113.0 162.2

232.0 111.0160.2

120.9

Indicates the mean difference is significant at 0.05
Indicates the mean difference is significant at 0. 1 0

b)
Mean Difference SWE (mm) 2005

E-Low S-Low vV -Low W-HighLake Pateau N-Low
-298.5
315.2
335.3
209.8

38.1
-287.9
-208.6
-316.2

77.7
-263.5

260.4
277.1

-297.2
-171.7

-220.8
237.5
257.6
132.1
39.6

210.2
-130.9
238.5

Flat
Lake

Plateau
North Low
North High
East Low
East High
South Low
South High
West Low
West High

105.4 -106.6
126.7-125.5

106.4
249.8 170.5 278.1

107.6

Indicates the mean difference is significant at 0.05
Indicates the mean difference is significant at 0.10

C)
Mean Difference SWE (mm) 2006

S-Low W-Low W-HPlateau N-Low E-Low

-40.6
75.2

102.6
70.5

385.4

83.0
117.6

-145.1
28.1

343.0
42.4

375.0
-409.6
-437.1
-263.9-1

51.0
334.4

-292.0
-328.5

108.0 -417,4
-452.0
-479.5
306.3

8.6
-376.8
-334.4
370.9
-42.4
309.4

-111.1
145.7

425.9
-460.6
-488.0

4.9

-142.6
-170.0-108.6Plateau

North Low
379.5 318.0North High

East Low
East High
South Low
South High
West Low
West High

Indicates the mean difference is significant at 0.05
Indicates the mean difference is significant at 0.10
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d)
SLOPES

Plateau N-Low N-High ?-Low E-Hiph S-Low S-High W-Low W-HighFlat Lake
63.2252.6 352.8-43.0 305.4 114.8 23.438.7 51.9Flat

101.9 391.5291.381.7 344.1 42.9 -62.113.2 153.5Lake
75.3 304.5 115.1 -404.7357.3 56.2 166.794.9Pateau

20.219.6 209.6 309.838.8 71.82624North Low
52.8 242.2 -47.4282.0301.1 190.6North High

59.0 348.5248.3110.6 19.2East Low
137.8 51.6 238.091.4East High
229.2! 39.8 329.4South Low

189.4 100.2South High
289.6West Low

West High
Indicates the mean difference is significant at 0.05
Indicates the mean difference is significant at 0.10

e)
SLOPESMean Difference SWE (mm) 2008

Plateau N-Low N-High E-Low ?-High S-Low S-High W-Low W-HighFlat Lake
333.6140.9 8.00.2 267.8 20.6 193.0 10.433.1 57.8Flat

174.0 41.1 366.7226.1 22.724.8 32.8 300.8 53.6Lake
-65.8 391.4198.857.6 325.6 78.4 250.8 -47.5Pateau

193.2 8.2 333.810.1 141.2268.0 20.8North Low
126.9 259.8 65.8247.2 74.8 278.1North High

12.6 313.130.9 120.4172.5East Low
185.0203.4 52.1 140.6East High

151.3 18.4 344.0South Low
132.9 192.7South High

325.6west Low
West High

Indicates the mean difference is significant at 0.05
Indicates the mean difference is significant at 0.10

f)
SLOPESMean Difference SWE (mm) 2009

Lake Plateau N-Low N-High E-Low ?-High S-Low S-High W-Low W-HighFlat
175.92327 -45.7 177.2 39.436.5 31.3 209.9 38.7Flat 14.4
190.260.1 191.5 53.822.1 -45.7 224.2 53.0 247.0Lake

82.2 213.7 75.9 212.467.8 246.4 75.2 269.2Plateau
144.6178.6 201.4 14.5 145.9North Low

22.8 164.1 32.7 170.4 34.0171.2North High
194.0 7.1 138.5 0.8 137.2East Low

186.9 55.5 193.2 56.8East High
131.4 130.1South Low

1.3137.7South High
136.4West Low

West High
Indicates the mean difference is significant at 0.05

j Indicates the mean difference is significant at 0.10

Table 4.8 shows that the SWE in certain categories are always significantly

different from each other while others are sometimes or never significantly different. The

only inter-annually consistent difference seems to be between plateau and flat, which

are significantly different in each year survey. Plateau and lake are significantly different

in each year except 2005 and 2007. Lakes and flat are significantly different in three of

the six years, 2006, 2007, and 2008. The results of the slope categories are somewhat
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surprising in that there are relatively few significant differences, especially in 2005, 2008
and 2009. The 2006 survey exhibits differences which would be expected in most years.

High slopes are significantly different from flat, plateau, lake, low slopes, and often other

high slopes. However, in years other than 2006, there is a lack of significant difference

between slopes and all other categories.

The GH test is used because it is the most robust test when the categories have

unequal sample ? and heterogeneity in variance (Toothaker, 1999). However, the results

are not altogether expected. The lack of significant differences between slopes and other

categories could easily be a product of low sample ? in some high slope categories and

the conservative nature of the GH test. Traditionally in statistics, a researcher aims to

meet the assumptions of a given test. However, in this case, the relevant question is not

whether ANOVA and related post-hoc test assumptions are exactly satisfied. The

concern is whether or not possible violations of these assumptions have consequences

for the validity of the results (Glass et al., 1972). As indicated, the GH test is used

because of the heterogeneity of variance and unequal sample sizes. However, the

Leveens test, which is used to determine homogeneity of variance, is not performed in a

pair-wise fashion. As such, there is a single Leveen statistic and significance for each

year instead of for each category within each year. As a result, certain categories within

the years may in fact have equal variance. If the equality of variance is not known, it is

best to assume inequality and use the GH test. However, for comparative purposes, the

more liberal Tukey-Kramer Honestly Significant Difference (HSD) post-test was also

used. The Tukey-Kramer HSD (TK) test is applied when there are unequal sample sizes;

however, it is not as robust when uncertainty about homogeneity variance exists

(Toothaker, 1999). Table 4.9 shows the results of both the TK and GH post hoc

difference of means tests.
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Table 4.9. Summary of post-hoc difference of means tests for
a) flat tundra, b) lakes, c) low slopes, and d) high slopes

2004 2005
FLAT

2006 2007 2008 2009
Lake
Plateau
North Low
North High
East Low
East High
South Low
South High
West Low
West High

!Significant at 0 05 using both Tukey and GH
Significant at 0.05 using Tukeyj Significant at 0.05 using GH

2005
Flat
Plateau
North Low
North High
East Low
East High
South Low
South High
West Low
West High

I Significant at 0.05 using both Tukey and GH
Significant at 0.05 using Tukey

] Significant at 0.05 using GH

NORTH LOW SLOPE
2004 2005 2006 2007 2008 2009

East High
South High
West High

EAST LOW SLOPE
2004 2005 2006 2007 2008 2009

North High
South High
West High

SOUTH LOW SLOPE
2004 2005 2006 2007 2008 2009

North High
East High
West High

WEST LOW SLOPE
2004 2005 2006 2007 2008 2009

North High
East High
South High

!Significant at 0.05 using both Tukey and GH
Significant at 0.05 using Tukey

) Significant at 0.05 using GH
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d)
NORTH HIGH SLOPE

2004 2005 2006 2007 2008 2009
East High
South High
West High

EAST HIGH SLOPE
2004 2005 2006 2007 2008 2009

North High
South High
West High

SOUTH HIGH SLOPE
2004 2005 2006 2007 2008 2009

North High
East High
West High

WEST HIGH SLOPE
2004 2005 2006 2007 2008 2009

North High
East High
South High

Significant at 0.05 using both Tukey and GH
Significant at 0.05 using Tukey
Significant at 0.05 using GH

The TK test does show some significant differences among categories where the

GH does not. For example, using the TK test, flats are never significantly different from

lakes, however, they are often significantly different from both high and low slopes. Both

tests seem to concur that flats are significantly different from plateaus. Similarly, using

the TK test, lakes are also more often significantly different from slopes, especially in

2009. Table 4.10c shows an interesting result in that neither the GH or TK test indicate

any significant difference between low slopes in any of the years. For high slopes, the
TK test does show more significant differences than the GH in some years, especially

between east high slopes and all others. Neither the TK nor the GH tests indicate very

many significant differences between north, south, and west high slopes.

Using two difference of means test does offer some reassurance but also some

concerns as some of the results vary. It is important to note that the GH test results are

more statistically robust, and any conclusion from this analysis should not be based

solely on the TK test results. Nonetheless, both post-hoc tests have shown some

interesting inter-annual relationships between the categories. To summarize, the most

interesting findings are:
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(a) SWE on low slopes on north, east, south, and west aspects were never found to
be different from each other.

(b) SWE on low slopes were never different from SWE on flats using the GH test

and only different in three cases using the TK test.

(c) SWE on flats and plateaus were found to be significantly different in every year

using the GH test and four of six years using the TK test.

(d) SWE on flats and lakes were significantly different in only three of the six years

using the GH test and never different using the TK test.

(e) SWE on north, south, and west high slopes were only different from each other in

three cases using the TK test.

It can be concluded from these summary points that it is not necessary to include all

eleven categories in the terrain classification. The implications of combining different

categories will be investigated in the next section.

4.4.2.2. Terrain Weighted SWE with all Categories

The main goal of a terrain based classification is to better define how SWE is

distributed throughout the study area. The end goal is to create a terrain weighted SWE

value which would take into consideration the proportion of features in the study area

and weight the depth of SWE appropriately. A terrain weighted mean SWE was

calculated first, using all eleven categories, and the following equation:

Weighted mean SWE =S B1X1 +d2x2 dnxn
where B represents the percent of each terrain category and ? represents the mean

SWE for each terrain category. For comparison, an arithmetic mean SWE was

generated using the following equation:

Arithmetic mean SWE = ^x'+*2 x"
N
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where ? represents the mean SWE for each terrain category and N represents the

total number of categories. The weighted mean SWE are compared to the arithmetic

mean SWE for each year in Table 4.10.

Table 4.10. Terrain weighted mean SWE compared to
arithmetic mean SWE for each survey year

%
Study Area

2004
W

2005
W

2006
W

2007
W

2008
w

2009
W

Flat Tundra
Lakes
Upland Plateaus
Low North Slopes
Steep North Slopes
Low East Slopes
Steep East Slopes
Low South Slopes
Steep South Slopes
Low West Slopes
Steep West Slopes

36.7
25.6
2.0
6.0
3.1
4.6
2.8
6.3
3.3
7.4
2.5

123
97
64
101
186
228
413

198
337
153
257

45.1
24.8
1.28
6.06
5.77
10.5
11.6
12.5
11.1
11.3
6.43

95
75
58

182
309
107
184
76
315
129
392

34.9
19.2
1.16
10.9
9.58
4.92
5.15
4.79
10.4
9.55
9.8

137
102
89
248
563
177
220
166
471
203
554

50.3
26.1
1.78
14.9
17.5
8.14
6.16
10.5
15.5
15

13.9

109
73
57
175
364
106
223
136
288
197
447

40
18.7
1.14
10.5
11.3
4.88
6.24
8.57
9.5
14.6
11.2

100
67
42
100
223
121
293
90

241
108
434

36.7
17.2
0.84

6
6.91
5.57
8.2

5.67
7.95
7.99
10.9

77
62
40
108
286
115

309
122
253
116
252

28.3
15.9
0.8

6.48
8.87
5.29
8.65
7.69
8.35
8.58
6.3

MEAN SWE 196 146 175 120 266 180 198 137 165 114 158 105
Difference (A - W) 50 55 86 61 52 53

A represents the Arithmetic mean SWE
W represents the weighted mean SWE

It is clear from Table 4.10 that using a weighted mean, which takes into

consideration the proportion of different terrain categories in the study area, produces

much lower mean SWE than using the arithmetic mean. However, the weighted mean is

more realistic as it diminishes the relative influence of the terrain categories which are

spatially constrained. This is most prominent in steep slopes, which do not occupy much

of the study area but have much higher SWE than other categories.

It is important to note the difference in the values of arithmetic mean SWE

between Table 4.10 and mean SWE shown in the descriptive statistics of Table 4.4. The

mean SWE values in Table 4.4 are lower due to the fact that they are derived using a

different approach. In Table 4.4, the mean SWE are calculated summing all SWE

measurements taken during that survey year and dividing by the number of

measurements. This method derives an arithmetic mean but is affected by differences in
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the number of samples taken in each category from year to year. In Table 4.10, the

mean SWE for each terrain category are used instead of each individual site SWE. This

eliminates the effect of a difference in sample numbers and site location from year to

year. However, this method assumes that sites chosen are representative, and the

terrain category mean is a good approximation of SWE within that specific category

anywhere in the study area.

4.4.2.3. Refining the Number of Terrain Categories

In Section 4.4.2.1, several difference of means tests were conducted. The results

shown in Table 4.9 demonstrate that the SWE in several categories are not necessarily

significantly different from each other. Based on these analyses the terrain classification

can be modified, and several classes can be combined (Figure 4.17).

Terrain Unit
Flat Tundra
Lakes
Upland Plateaus
Low North Slopes
Steep North Slopes
Low East Slopes
Steep East Slopes
Low South Slopes
Steep South Slopes
Low West Slopes
Steep West Slopes

Percent
36.7
25.6
2.0
6.0
3.1
4.6
2.8
6.3
3.3
7.4

2.;

Terrain Unit
FLAT
LAKES
PLATEAU
LOW SLOPES
EAST HIGH
NORTH-WEST-SOUTH HIGH

Percent
36.7
25.6
2.0

24.3
2.8
8.9

Terrain Unit

FLAT (and slopes less than 7")
LAKES
PLATEAU
EAST HIGH
NORTH-WEST-SOUTH HIGH

61.0
256
2.0
2.8
8.9

Figure 4.17. Modified terrain based classification

The original eleven categories were initially reduced to six based on the most

significant and obvious results. East high slopes were kept separate from north, west,

and south high slopes as there were more cases where they were significantly different.

However, a further step was taken to reduce the number of categories to five. This was

justified as there were no cases where low slopes were significantly different from flats

using the GH test and only three instances where low slopes were significantly different

from flats using the TK test. The terrain weighted mean SWE values were then re-

calculated using the five new categories and compared to the weighted SWE using the

original 1 1 categories (Table 4.1 1).
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Table 4.11. Five category terrain based weighted mean SWE
compared to eleven category weighted mean SWE

%

Study Area

2004
W

2005
W

2006
W

2007
w

2008
w

2009
W

Flat Tundra (less than 7 )
Lakes
Upland Plateaus
Steep East Slopes
Steep N-W-S Slopes

61.0
25.6
2.0
2.8
8.9

168
97
64

413
269

103
25

1
12
24

108 66
75 19

160 98
102 26

58
184
347

1
5

31

89
220
518 46

122.1 75
73 19
57

223
424

103 63
67 17

1
6
38

42
293

94
62
40
309

57
16
1
9

331 29 261 23
NEW FIVE CA TEGORY MEAN SWE 202 164 154 117 218 171 180 138 167 119 153 106

Difference (A - W) 38 37 47 42 48 47

ELEVENCATEGORYMEANSWE(TABLEiW) I 196 146 \ 175 120 \ 266 180 | 198 137 | 165 114 \ 158 105
Difference NEW (5) -OLD(H)] 6 18 \ -20 -3 | -49 ¦18

A represents the Arithmetic mean SWE
W represents the weighted mean SWE

The weighted mean using five categories produces a lower value than the

arithmetic mean SWE similar to using all eleven categories. Using five categories

instead of 1 1 does produce a much lower arithmetic SWE in some years (2005, 2006,

2007), while in other years, it is quite similar (2004, 2008, 2009). The five category

weighted SWE is quite similar to the 1 1 category weighted SWE in all years. The

greatest differences are 18 mm lower in 2004 and 9 mm higher in 2006. Otherwise, the

difference between the two approaches is quite small. This would imply that using five

categories would not produce values radically different from using the original eleven

categories.

A potential problem with using the five category classification is that it may not

provide the same level of information about snow cover variability as the eleven category

version. As outlined in Section 4.3.3, the coefficient of variation (CV) is very useful for

comparing variability between different categories. The CV was calculated for the five

categories for comparison with the CV for the eleven categories (Table 4.12).
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Table 4.12. The coefficient of variation of SWE for the five terrain categories

%
Study Area

2004 2005 2006
CV W-CV

2007 2008 2009 Weighted Mean
CV

Flat Tundra (less than 7 )
Lakes
Upland Plateaus
Steep East Slopes
Steep N-W-S Slopes

61.0
25.6
2.0
2.8
8.9

0.82
0.37
0.71
0.50
0.85

o.so
0.09
0.01
0.01
0.08

0.61 0.37
0.35 0.09
0.61 0.01
0.59 0.02
0.41 0.04

0.51 0.31
0.29 0.07
0.46 0.01
0.34 0.01
0.41 0.04

0.49 0.30
0.43 0.11
0.64 0.01
0.47 0.01
0.40 0.04

0.45 0.28
0.39 0.10
0.62 0.01
0.49 0.01
0.50 004

0.55
0.30
0.56
0.32
0.44

0.33
0.08
0.01
0.01
0.04

0.349

0091
0.012
0.013
0 045

Five Category Weighted Mean CV 0.70 0.53 0.44 0.47 0.45 0.47 0.51

The CV for the new flat tundra category is higher in all cases than the former flat

category in the eleven category classification, especially in 2004. This is due to the

amalgamation of the four low slope categories with the flat category. However, the

amalgamation of the three steep slopes (north, west and south) did not change the CV

very much, except in 2004. It is clear that while the classes may not be significantly

different, the combination of multiple categories does increase the variability in

measured SWE. This is further demonstrated in the overall weighted mean CV. In Table

4.12, the weighted mean CV for all years and categories is 0.51. This is an increase

from the overall weighted mean CV of 0.40 in Table 4.7. However, the CV for flat and

steep n-w-s categories is much higher in 2004 than in other years. If the 2004 season is

ignored, the overall weighted mean CV using five classes drops to 0.46, which is much

closer to the 0.40 of Table 4.7.

4.4.2.4. Summary of Terrain Weighted SWE

The use of five categories instead of eleven does not produce much difference in

annual weighted mean SWE. However, there is an increase in the CV when the

categories are collapsed from eleven to five. In terms of extrapolating snow cover to the

scale of the study area and beyond, the use of five categories is likely sufficient to

maintain a CV of around 0.40 to 0.50. Due to the small differences between the

classifications, the weighted SWE values using the five category approach will be used

for comparison with satellite data in Chapter 5.
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4.4.3. Merging Terrain and Land Cover Information

In high latitude tundra in regions with no shrubs or other tall vegetation, snow

distribution is driven largely by terrain (Bruland et al., 2001, Hirashima et al., 2004).

However, the region around Daring Lake is considered to be low arctic shrub tundra. In

this type of tundra, terrain is not the only variable which can influence the distribution of

snow. Many researchers have recognized the role of vegetation on the pattern of snow

accumulation (Pomeroy et al., 1997, Essery et al., 1999, Sturm et al., 2001b). In Section

3.3, the study area was delineated using a satellite derived land cover classification. The

utility of including this information in a snow cover classification must be investigated.

Despite the recognized influence of vegetation on snow accumulation, the

determination of land cover over large areas is not a simple process during winter field

campaigns. This is because most of the ground cover is not easily delineated under a

blanket of snow. As such, recording land cover was not always a priority during data

collection in the field. Moreover, relying on the satellite classification is not ideal without

in-situ land cover observations for validation.

The 2007 field season was the largest in terms of personnel and time spent in

the field. This translated into the most sites visited during all surveys and the collection

of land cover information on flat tundra, lakes and plateaus. The data collected in 2007

provide an opportunity to evaluate the addition of land cover information to the terrain

based consideration of snow cover. From the data collected in 2007, the flat, plateau

and lake categories were expanded (Figure 4.18).
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1 IFLAT I

2 !plateau I

3 I LAKE I

Low Shrub Tundra

Grassy Heath Tundra
Rocky Tundra

Predominantly Rocky
Predominantly Vegetated

Small Pond

Large Lake

Figure 4.18. The addition of land cover classes to the terrain based
snow cover classification

The inclusion of land cover information does make some sense intuitively as areas

with emergent vegetation should see greater and more variable depth of SWE compared

with areas with no vegetation or buried vegetation (see Section 4.2.2). Furthermore, the

complex surface roughness associated with rock outcrops and boulder deposits could

increase the variability of the snow cover, especially density. While technically not land

cover information, it was observed in the field that small ponds (less than 60 000 m2)

were typically more affected by wind scour and had more areas of bare ice. On lakes

larger than 60 000 m2, the depth of SWE seemed to be more consistent. To assess the

utility of adding land cover information two questions will be addressed:
1 . Are the seven sub-groups identified in Figure 4.18 significantly different from

each other?

2. Do the inclusion of land cover data and the use of seven instead of three

categories decrease the variability in SWE (CV) in the overall classification?

To address whether or not the sub-classes of land cover are significantly different

from each other, an ANOVA was used along with the Leveens statistic. The GH multiple

difference post-hoc test was applied to flats because there were more than two groups.
The results are summarized in Table 4.13.
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Table 4.13. Homogeneity of variance and difference of mean statistics
for land cover information

Flat
Leveens
ANOVA

0.02
0.00

Plateau
Leveens
ANOVA

0.705
0.816

Lake
Leveens
ANOVA

0.46
0.00

[Mean Difference SWE (mm)
I Vea Rocky I

Ve^ ¦¦¦"¿J
Shrub Grass

Shrub
Grass
Rock

Small
Large

Small Large
-39

Indicates the difference is significant at 0.05

Table 4.13 shows that in the flat tundra category, there is a significant difference

between shrub and grass and between rocky areas and grass, however, there is no

difference between low shrub and rock. The low shrub land cover had the highest SWE

while the grass had the lowest. The Leveens statistic is significant, meaning there is

heterogeneity in variance between the three groups. This would suggest that separating

flat tundra into at least two sub-groups may improve the classification. The two

categories would be flat tundra grass and flat tundra shrub-rock.

However, a potential problem with this approach is the separation of these flat

tundra classes throughout large scale study areas. Land cover and SWE data are

recorded in the field as point data. Moreover, the LANDSAT land cover classification

described in Section 3.3.3 provides only broad classes which are assumed to be

homogenous in a 30 m pixel area. Another issue is the matching of LANDSAT classes,

derived from a summer image, with land cover observed in winter. For example, the

LANDSAT tall shrub classes comprise a very small part of the study area (Tall Shrub

0.29 %, and Birch Shrub 0.49 %). However, in the field, it is evident that there are large

areas with low shrubs ranging from sporadic to quite dense (Figure 4.19).
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Figure 4.19. Example of a site which contains sparse low shrub vegetation
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Table 4.13 shows how these shrub areas have the highest SWE. The problem is

thai the LANDSAT classification does not have a distinct low shrub class. This is due

primarily to the difficulty in quantifying the abundance of shrubs within a 30 m pixel. The

rocky flat tundra category proposed in Figure 4.18 could be subject to the same problem.

The LANDSAT boulder association class is very small, while the heath/boulder class is

somewhat larger at 13 %. Certain parts of the study area are dominated by boulders and

rock outcrops, and it may again be difficult to quantify the degree of boulders within a 30

m pixel (Figure 4.20). The only hope would be to distinguish between the heath/boulder

(12%) and the heath tundra grassy class (24% of the study area). This, however, would

not address the delineation of low shrubs and hamper the use of the shrub-rock

category.
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Figure 4.20. Boulders distributed across the tundra

The utility of sub-dividing flat tundra into two classes is further examined by

looking at the change in the CV of SWE moving from one to two groups (Table 4.14).

Table 4.14. Statistics of flat tundra SWE categories

I Flat

Mean
SWE STDEVl CV I ?
109 45 0.41 84

Shrub-Rock
Grass

125
78

44
27

0.35
0.34

56
28

Table 4.14 shows that the CV in SWE decreases from 0.41 to 0.35 when flat

tundra is separated into two categories. These results suggest that in the future, flat

tundra should be separated into either grass heath tundra or low shrub-rock tundra.

However, the extrapolation of these sub-categories beyond the site scale would be very

difficult using the existing remote sensing land cover classification.

Similar to flat tundra, the plateau category was separated into either vegetated or

rocky (Figure 4.18). Table 4.13 shows that while the two categories had homogenous
variance (Leveens statistic ? = 0.705), there was no significant difference (ANOVA
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0.816). These results suggest that the two categories need not be created, and a single

category for upland plateaus can be used.

The lake category was also separated into two categories based on lake area.

The Leveens statistic was not significant which indicates that the two groups have

homogeneity of variance. However, the ANOVA was significant (0.000), which indicates

that the SWE in the two lake categories was significantly different. There was

significantly less snow on smaller lakes as compared to larger lakes. Furthermore, the

separation of lakes into two categories does change the CV of SWE (Table 4.15).

Table 4.15. Statistics of lake SWE categories

Lake

Mean
SWE STDEV I CV I ?

71 28 0.40 50

Large Lake
Small Lake

89
50

17
24

0.20
0.48

27
23

It was suggested in Section 4.3.3 that lakes have the least variability in SWE.

Table 4.15 shows that the variability in SWE is much lower on large lakes. A greater

relative fraction of small lakes are influenced by wind scour, and as a result, have much

higher variability and lower SWE. As such, separating lakes into two categories would be

beneficial in improving the classification.

The need for separating lakes is further demonstrated by examining the

proportion of large and small lakes in the study area. In the study area, small lakes

occupy a very small part of the total landscape area (Table 4.16).

Table 4.16. The percent of the study are occupied by lakes of different sizes

Study Area
Total Lake Area
Area small lakes (< 60000 m2)

625000000 m'
159762876 m:

9787207 m:

Percent
Study Area

26%
1.57%
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Table 4.16 shows that small lakes comprise only 1 .57 % while large lakes

comprise 24.4 % of the total study area. Hence, small lakes should have little influence

in a study area weighted mean SWE. However, when the measurements are lumped

with large lakes into a single lake class, they have a greater influence on the lake

category SWE. Essentially, small lakes have a disproportionate spatial influence on

mean SWE as well as variability in SWE within the existing lake category. In the future, it

will be necessary to separate lakes into at least these two categories in order to improve

the weighted mean classification of SWE. Unlike classes which rely on remote sensing

land cover information, the separation of lakes into two classes is easily done within a

GIS.

4.5. Summary of Snow Data
4.5.1. Introduction

The purpose of this chapter was to establish a more complete understanding of

tundra snow cover properties and variability through the multiple years of late winter,

spatially intensive, pre-melt in-situ snow cover measurements. The data from the six

years of field surveys reinforce several of the assumptions outlined in Chapters 1 and 2

and in Section 4.2.1. First and foremost, the spatial distribution of snow depth, density

and SWE was dominantly controlled by the interaction of blowing snow with different

terrain and land cover types. Furthermore, the snow cover data collected confirmed that

spatially constrained measurements of any kind are not sufficient to understand snow

distribution and properties in the tundra. However, despite the heterogeneity of the snow

cover distribution, several inter-annual consistencies were identified. Moreover, the use

of a terrain and landscape classification system was explored and proved to be useful

for the generalization of snow cover properties throughout large study areas.
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4.5.2. Inter-annual Patterns ¡? Tundra Snow Cover

The results shown in Section 4.2.2.1 are very noteworthy because they highlight

the fact that tundra snow density is not all that variable when considered on a site-by-site

basis, between different terrain types and from season to season. A regional average

density of 0.294 g/cm3 was derived from the six years of measurements and is

comparable with those proposed by other researchers, especially if the low densities

observed in 2009 are excluded.

The ratios of SWE derived in Section 4.2.3 are also quite interesting. Despite

potential differences in seasonal weather patterns, there were many consistent ratios in

the depth of SWE on flat tundra to the depth SWE in other terrain categories. This

further reinforces the data from Woo (1998) who suggested that, despite differences in

seasonal snowfall, the inter-annual patterns of snow cover deposition do not change

very much. Furthermore, Hirashima et al. (2004) indicated that the depth of snow drifts

remains similar, and it is the areal extent of deposition which changes from year to year.

In this study, Table 4.3 and Figure 4.1 1 demonstrate that the depth of SWE in drifts does

change from year to year, as does the slope aspect containing the most SWE. The areal

extent of snow accumulation in drifts was not quantified; however, anecdotal

observations suggest that in this study area the extent of snow drift deposition does

increase as SWE depth increases. The ratios calculated in Table 4.3 represent a

contribution for the planning of future field campaigns or placement of automated

gauges. Future patterns of SWE on different terrain types throughout the study area

could be approximated from measurements taken only in areas of flat tundra.

Quantifying variability among different years at the study area scale was useful in

showing how SWE varied without considering differences among terrain categories. The

high variability in SWE between years shown in Section 4.3.2 reinforced the need to use

a terrain based classification to better understand snow cover distribution. Table 4.6
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showed how variability (CV) in SWE was relatively consistent based on the assumptions

of snow re-distribution with terrain categories outlined in Table 4.6. Perhaps the most

interesting result is that shown in Table 4.7 where the overall weighted mean CV for the

study area was shown to be 0.40, which is identical to that proposed for tundra snow by

Liston (2005). The analysis of variability did show that between terrain types and survey

years there were large differences in the CV of SWE. However, the weighted mean CV

in SWE of 0.40 is a very useful generalization for studies done using coarse resolution

grids and at a regional scale.

4.5.3. Extrapolation of SWE

At local scales, tundra snow cover is heterogeneous due to the interaction of

blowing snow with terrain and landscape features. However, at a regional scale, the

seasonal distribution and variability of snow cover follow predictable patterns. These

patterns need to be exploited as, no matter how intensive, ground data collected through

in-situ field observation or by automated gauges are spatially constrained. Hence, for

application to remote sensing and other grid based modelling, snow cover data need to

be generalized and extrapolated over larger areas to be of any use. Moreover, coarse

resolution passive microwave remote sensing data attempt to provide single estimates of

SWE over 625 km2 EASE grid cells. These estimates are essentially useless unless they

can be related to sub-grid snow cover properties.

The issues of generalizing, extrapolating and downscaling snow cover

information are addressed through the use of a terrain and landscape based

classification scheme. In this way, sub-grid snow cover can be explained by working up

from point data or down from EASE grid data. Deriving a weighted mean SWE based on

the proportion of landscape and terrain features was shown as the best method for

providing regional snow cover information (Table 4.10). The optimum number of
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categories for the study area was reduced from eleven to five due to indifferences in

SWE between certain categories (Figure 4.17).

The use of a terrain classification and weighted mean approach is not without

limitations. For example, the quantification of the percent area for each category is in

itself difficult to validate. The use of GIS and topographic information from digital sources

means that the classification is inherently a gross oversimplification of the true

landscape. Certain features are smoothed out considerably just by virtue of the contour

interval (10m) and classification grid resolution (10m). Moreover, the modelled

boundaries between categories are not as discrete as the GIS would suggest. However,

the use of an areally weighted mean SWE and a terrain classification is the best solution

given the size of the study area and the objectives of the project. The extrapolated snow

cover will be used for comparison with satellite based passive microwave data in

Chapter 5 while the point data collected will be compared to spatially coincident multi-

scale ground based and airborne passive microwave data in Chapter 6.
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CHAPTER 5: EVALUATING SATELLITE PASSIVE MICROWAVE DATA

5.1. Introduction

Passive microwave sensors aboard spaceborne platforms have been operational

since 1972 with the launch of the Electronic Scanning Multichannel Radiometer (ESMR).

The development of the Scanning Multi Channel Microwave Radiometer (SMMR) in

1978, with improved resolution, resulted in interest in using passive microwave data in

snow research (Chang et al., 1987). The SMMR sensor was followed by the Special

Sensor Microwave Imager (SSM/I) in 1987 aboard the Defense Meteorological Satellite

Program (DMSP) platforms. The SSM/I sensors are still in orbit and continue to provide

passive microwave data. Application of SMMR and SSM/I data were restricted to large

areas due to coarse spatial resolution. The Advanced Microwave Sounding Radiometer

Earth Observing System (AMSR-E) sensors aboard the Aqua platforms in 2002 provide

a finer spatial resolution and data at similar frequencies to those previously collected.

Hence, the AMSR-E data often replace the still operational SSM/I data in current

research efforts.

The time series of data provided since the launch of SMMR is of great interest for

its potential to provide over 30 plus years of spatially extensive snow cover information.

Several researchers have exploited all or part of the available time series for application

to hydrologie processes or evaluation of climate models (Derksen et al, 2000c, and

2003, Wulder et al., 2007, Biancamaria et al., 2008). Furthermore, the time series of

passive microwave estimates can be merged with conventional data records dating from

the early 1900s to produce an even longer time series of snow cover information

(Derksen et al., 2004).

As outlined in Chapter 2, passive microwave sensors have a proven record of

estimating SWE over different landscapes. However, there still is no well accepted

method for estimating tundra SWE. The common problem is that the conventional
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algorithm approach using a 19 and 37 GHz Tb difference produces an underestimation

of ground measured SWE (Boudreau and Rouse, 1994, Grippa et al., 2004, Armstrong
and Brodzik, 2002, Rees et al., 2005). As such, there has been little work done to exploit

the existing multi-sensor time series over the tundra.

The theoretical challenges hampering tundra SWE algorithm development were

outlined in Section 2.4. Essentially the biggest challenge is addressing the potential

influence of sub-grid terrain and land cover properties on satellite Tb. However, before

sub-grid heterogeneity can be resolved, there needs to be a comparison of satellite

scale data with the in-situ SWE data described in Chapter 4. This is, in part, to confirm

the underestimation of SWE using the conventional 37-19 GHz approach and to

examine the behavior of each frequency with differing SWE. When the conventional 37 -

19 GHz approach is used, there are several basic assumptions made:

1- Satellite Tb at 37 GHz changes throughout a winter season

2- Satellite Tb at 1 9 GHz does not change very much throughout a winter season

3- The Tb at 19 and 37 GHz are not systematically influenced by landscape or

terrain

4- The difference between 19 and 37 GHz can be used to estimate SWE

These assumptions need to be investigated in order to better understand why

SWE is not well estimated in the tundra. The first two assumptions are important to

examine because if violated, then the 37-19 approach would be totally ineffectual at

estimating SWE. Similarly, the third assumption is critical because a systematic

influence would mean that Tb data are being perpetually affected by confounding factors

and are not sensitive, or less sensitive to changes in SWE. Finally, the fourth

assumption indicates that if there is in fact a difference between Tb at 19 and 37 GHz,

then it can be related to SWE. In order to evaluate the first three assumptions, a spatial

and temporal analysis was performed using the time series of currently available satellite
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passive microwave data (1979-2008). To evaluate the final assumption, in-situ snow

survey data from Chapter 4 were compared to spatially and temporally coincident

satellite passive microwave Tb.

5.2. The Passive Microwave Satellite Record

Satellite data for the study region are available from the SMMR, SSM/I and

AMSR-E platforms. The SMMR data were collected every second day, beginning with

the fall/winter of 1978/79. The SMM/I data were collected daily beginning in the 1988/89

season. AMSR-E data were also collected daily, starting in the 2001/02 season. The

final season available at the time of analysis was 2007/08. All data were acquired in the

EASE grid format from the National Snow and Ice Data Center (NSIDC). To investigate

spatial patterns in Tb, an arbitrary domain of 40 EASE grid pixels was selected around

the study area pixel. The domain was selected to be predominantly outside of the boreal

forest and with varying lake fraction (Figure 5.1).

N

Study Area 25 km
I I

Figure 5.1. Spatial domain of time series EASE grids
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Brightness temperatures at 19 and 37 GHz were acquired at the vertical

polarization. Vertically polarized data were used as horizontally polarized data can be

influenced by ice layers which alter Tb independently of SWE (Rees et al., 2010). To

capture end of winter pre-melt SWE and minimize daily variability, an average Tb was

taken over a ten day period from April 1 to April 10. This time period was chosen as it

most likely represents maximum SWE for each season and minimizes the likelihood of

any melt events. Tb data from the morning, or cold overpass were used to further
minimize the likelihood of wet snow from any diurnal melt events (Derksen et al., 2000b).

To examine temporal and spatial patterns in the data, the average April 1 to April 10 Tb

difference from 37 and 19 GHz vertically polarized data (ATb37"19) were analyzed along
with individual frequencies where appropriate. The ATb37"19 was used as it forms the
basis for algorithm development and theoretically minimizes the influence of differences

in physical air temperature between different years.

5.3. Temporal Analysis of Tb

5.3.1. Introduction

The following section will address the first two assumptions noted in Section 5.1 .

1 - Satellite Tb at 37 GHz changes throughout a winter season

2- Satellite Tb at 19 GHz does not change very much throughout a winter season

The testing of these two assumptions is important to determine if there are in fact

chages in Tb throughout a single season and from year to year. Chapter 4 showed that

the mean SWE measured in the study area can reach a maximum of 171 mm at the end

of the season and that mean SWE was different from year to year. If the 37 GHz Tb

does not change throughout a season (from November to April) and if there are no

differences in the end of season Tb from year to year, then there will obviously be

serious problems in estimating SWE using passive microwave data.
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5.3.2. Seasonal Evolution in 19 and 37 GHz Tb

To examine the seasonal evolution of Tb within a single season the 37 GHz and

19 GHz time series were plotted from November 1 to April 30 for the study area EASE

grid pixel for each of the years with in-situ SWE data (Figure 5.2).
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Figure 5.2. The seasonal evolution of 19GHz, 37 GHz from November 1 to April 30
for a) 2002/03 to 2004/05 and b) 2005/06 to 2007/08

During each of the seasons plotted in Figure 5.2, the 19 GHz Tb values start
somewhere between 245 and 250 K each season, dip to a minimum value of 235 to 245

K around day 30 to 60 and return close to their starting point at the end of the winter. At
19 GHz, the mid-winter decrease in Tb is likely a response to a decrease in air,
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underlying ice and ground temperatures. However, the changes in 19 GHz Tb
throughout the season are not smooth. There are many jumps in Tb and, in some cases,

over a relatively short period of time (for example 2003/04 from day 30 to 45). The jumps

in data could be due to daily or weekly changes in temperature, however, ground and
lake ice tend to have more stable seasonal temperatures than air. As such, the

fluctuations in 19 GHz Tb are likely a product of variation in the geolocation of the

satellite overpasses used in the resampling necessary to produce EASE grid data (Kelly,

personal communication; Armstrong and Brodzik, 1995). Swath data collected by the
AMSR-E sensors have a spatial resolution of 28 ? 16 km in an elliptical shape at 19GHz

(Figure 2.1). When swath data get re-gridded to the EASE grid projection, there will be

differences in how many swath footprints are integrated and where those are located. To

minimize the jumps in Tb, swath data may be more appropriate for seasonal timescales.

However, swath footprints do not cover the same location from orbit to orbit and so some

processing of Tb data Would still be required.

The 37 GHz does not follow the same seasonal pattern as 19 GHz. The 37 GHz

Tb starts off roughly equal to 19 GHz but decreases throughout the season, reaching a

minimum value at around day 60 to 75. After this point, there is often little change or a

slight increase in Tb towards the end of the season. This increase may be due to the

recognized reversal of 37 GHz Tb when snow depth reaches a certain point (Section

2.4.2.2). However, determining the cause of change in 37 GHz Tb can be only

speculative in the absence of seasonal snow cover information. Nonetheless, jumps and
fluctuations in 37 GHz Tb, similar to 19 GHz, are seen throughout each season. This

may also be attributed to EASE grid and swath geolocation issues. However, emission

at 37 GHz is influenced by the properties of the snow volume and by snow surface

temperatures, which make it more sensitive to changes in air temperature.
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5.3.3. Seasonal Evolution in ATtr y

Figure 5.2 does help validate the two assumptions outlined at the beginning of

this section. During each of the plotted seasons, the 19 GHz channel does not change

very much from its original value, and there is a decrease in the 37 GHz Tb over time.

This would imply that the use of a brightness temperature difference between the two

frequencies should be possible. The ATb37"19 was plotted for November 1 to April 30
from the study area EASE grid for each of the years with in-situ SWE data (Figure 5.3).
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Figure 5.3. The seasonal evolution of the ATb37'19 from November 1 to April 30
for 2002/03 to 2007/08

Figure 5.3 clearly shows that the ATb37"19 changes from near zero in early
November (Day 305) to a maximum value of -20 to -42 at around days 75 to 90. This

change in ATb37"19 throughout each season shows some sensitivity to parameters that

evolve over a winter season. In the tundra, from November to April, there are several

cryospheric elements which evolve: 1) changes in air temperature, 2) freezing of active

layer, 3) lake ice thickness, 4) snow depth, 5) snow density, and 6) snow stratigraphy.
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The challenge is isolating which of these elements is influencing the change in ATb37"19.
Figure 5.3 also shows that there are different end points in ATb37"19 between different
seasons. This is important because we would expect differences in cryospheric

elements between different seasons and, as mentioned, the in-situ measured SWE is

significantly different between these seasons.

The end of winter (April 1 to April 10) ATb37"19 were plotted for the entire 1979 to

2008 time series using the study area EASE grid pixel to see if there was any variability

or noticeable trends over time (Figure 5.4).
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Figure 5.4. The average April 1-10 ATb37"19 from 1979 to 2008
The mean end of winter ATb37"19 for the 1979 to 2008 time series is -25.5 with a

standard deviation of 6.4 K, a coefficient of variation of 0.25 and a large range of 27.3 K.

Figure 5.4 shows that there are definitely differences in end of winter ATb37"19 from 1979
to 2008 and that the points are not entirely randomly distributed. In order to provide a

visual impression of changes throughout the time series, lines of best fit were added

using a sum of least squares method. The 1979 - 2008 line shows a significant (p =

0.05) decreasing trend towards a greater ATb37"19 over the years. However, the time
series displays heteroscedasticy as the first half has a much larger dispersion than the
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second half. Each sensor period was examined separately. The 1979 - 1988 SMMR line

shows a slightly increasing trend; however, the slope of the line is not significantly

different than 0 (p > 0.05). The 1989 - 2001 SSM/I line shows a decreasing trend similar

to the overall time series trend. The slope of the SSM/I is also not significantly different

from 0 (p > 0.05) while the 2002-2008 AMSR-E line shows a steep increase in ATb37"19
(p = 0.02).

The trends in ATb37"19 time series are interesting but not that applicable at this

point because they cannot yet be related to SWE. It is also interesting to note that there
are some differences between sensors which should be investigated if the time series is

to be applied to further research. The three separate lines do show, however, that

discussing any trend in ATb37"19 really depends on which years are chosen as a start and
end point. What is most important is that there is in fact variation in ATb37"19 over the 30
year time series. If there was little change in ATb37"19 over the years, then it would clearly
not be sensitive to the annual differences observed in the in-situ SWE. Before the ATb37"

19 is compared to in-situ SWE, the third assumption must be addressed to determine if
seasonal differences in ATb37"19 are influenced by landscape or terrain. The most likely

example of this is a potential systematic influence on Tb from lake ice (Rees et al.,

2006). The spatial extent of lakes does not change from year to year; however, as ice

grows from the beginning of a season to the end, there could be a corresponding

change in Tb. If lake ice growth is the dominant influence, then there should be a good
correlation between ATb37"19 and the spatial distribution of lakes.

5.4. Spatial Analysis of Tb

5.4.1 Introduction

The following section addresses the third assumption:

3- The Tb at 1 9 and 37 GHz are not systematically influenced by landscape or

terrain.
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Different spatial patterns in SWE from year to year are expected. Snow fall

amounts can be different throughout the region due to seasonal weather patterns, and

snow depths can vary due to spatial differences in wind speed and direction. On the

other hand, there could be spatial patterns of SWE which seem to re-occur from year to

year. For example, when comparing 18 seasons of data across the prairies and boreal

forest, locations where deep snow and/or dense vegetation were present, Derksen et al.

(2003) found that the agreement between in-situ SWE and Tb decreased significantly,

and there was little inter-annual variability in SWE retrieval. This precipitated the

development of new algorithm approaches for estimating SWE in these areas.

Moreover, Derksen and Mackay (2006) investigated the dominance of an inter-annually

consistent band of high SWE between the boreal forest and tundra. The third

assumption outlined at the beginning of this chapter is directed towards addressing

these issues throughout the study region. With the absence of boreal type forests and

mountainous topography, the assumption made in Chapter 2, as pointed out by Derksen

et al. (2003), hypothesized by Rees et al. (2006) and further discussed by Derksen et al.

(2009), is that lake cover is the most likely candidate to have a systematic influence on

seasonal ATb37"19.

5.4.2. Spatial Principal Component Analysis

To look for dominant spatial patterns in the ATb37"19 data, a principal components

analysis (PCA) was used. PCA is a statistical technique which mathematically

transforms large amounts of data into a set of uncorrelated components to summarize

the majority of original information (Shaw, 2003). Moreover, PCA is a common method

used in snow climatology to isolate spatially or temporally coherent regions of snow

cover extent, SWE or snow cover duration (Leathers and Luff, 1997, Frei et al., 1999,

Frei and Robinson, 1999, Derksen et al., 200Od, Pivot et al., 2002).
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The average April 1 to April 10 ATb37"19 for the 40 regional EASE grid cells over
the 1979 to 2008 time series were subjected to a rotated principal component analysis in

order to identify the dominant spatial patterns. The varimax rotation method was chosen

as it has the advantage of maximizing variance between each component and the

original time series (Horel, 1981). This helps to increase the discrimination among the

component loadings, making them easier to interpret (Richman, 1986). A standardized

PCA (correlation matrix) was used as opposed to an unstandardized PCA (covariance

matrix) because it is commonly preferred for climate and snow cover applications

(Derksen et al., 200Od). Moreover, covariance is sensitive to the unit and scale of

measurement while correlation is standardized to scale by dividing the covariance by

standard deviation (Field, 2005).

Eigenvalues are an output from the PCA with give precise information on the

relative importance of each axis. The first component always has the highest eigenvalue

followed by the second. Eigenvalues for each PC are created and often used as a

threshold for determining which are most useful for interpreting the data (Shaw, 2003).

By graphing eigenvalues for each factor (scree plot), the relative importance of each

factor can be determined. Moreover, eigenvalues were converted into percent total

variance explained and plotted to assist in determining how many factors should be

considered (Figure 5.5).
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Figure 5.5. The percent variance explained by the first 10 components

157



Figure 5.5 shows that the first component (PC 1) explains 66 % of the total
variance in ATb37"19 over the 30 year time series, while the second component (PC 2)

explains only 10 %. The variance explained diminished after the second component.

Plotting eigenvalues or variance explained is useful but not the only step in selecting the

number of factors. Kaiser (1960) suggests retaining all factors with eigenvalues over 1 .

Although this criterion is sometimes considered too strict, the PCA of ATb37"19 produced
four components whose eigenvalues are over 1 . These four components explain 88 % of

the total variance in the spatial patterns of ATb37"19 over the entire time series.

This high percent explained by PC 1 suggests that there could be a dominant

spatial pattern in the ATb37"19 from season to season. To investigate the relationship
between the components and the original data, the component loadings can be examined.

A high positive loading indicates that the spatial pattern of ATb37"19 in the original data is
similar to that being summarized by the component. A negative loading indicates an

inverse spatial pattern between the original data and the component. Loadings near zero

mean there is little similarity between the original data and the component (Field 2005).

The component loadings were plotted for the first four components (Figure 5.6)
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The component loading patterns in Figure 5.6 further suggest that PC 1 is

summarizing a dominant spatial pattern in the time series. PC 1 loads most heavily into

most seasons after 1987-88. The only years not loaded dominantly into PC1 after 1988

are 1994-95 (PC 2), 1996-97 (PC 1 and PC 2), 2000-01 (PC 3), and 2004-05 (PC 3).

The dominant loading into PC 1 suggests there is little spatial variability in ATb37"19
between different EASE grid cells, especially after 1988. This suggests that the spatial

pattern of ATb37"19 is linked to spatially consistent features such as lakes or land cover.
To determine if lakes have a systematic spatial influence, a PCA was run using

EASE grid lake fraction determined from 1 :250 000 scale NTS topographic maps. The

analysis produced similar results as the first, however, included five PCs with

eigenvalues over 1 . PC 1 still explained most of the variance at 63% while PC 2

explained 1 1 %. The component loadings were plotted for the first five components

(Figure 5.7).
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The loading pattern remains the same as in Figure 5.6 except the final point on

the x-axis shows the loadings of the EASE grid lake fraction (Lake %). Interestingly, lake

fraction does not have a high component loading in PC 1 . This suggests that the spatial

distribution of EASE grid lake fraction is not well correlated to the dominant spatial

pattern of ATb37"19 summarized by PC 1 . However, lake fraction has a high component

loading in PC 5, which is not related to any of the ATb37"19. This again shows that in most
cases, lake fraction is not well spatially correlated to ATb37"19. If lake fraction was
systematically influencing end of season ATb37"19, we would expect it to be more
positively loaded into the components, especially PC 1 .

Although the PCA suggests that lake fraction does not have an influence on end

of season ATb37"19 in these 41 EASE grid cells, it does not imply this influence is

temporally static. Derksen et al. (2009) show how the influence of lakes on 19 and 37

GHz changes throughout a winter season. This makes sense given the penetration

depth at the frequencies being used. At 37 GHz, the depth of emission can range from 8

to 80 cm in dry snow (Chang and Foster, 1992). Assuming a maximum 80 cm, it is likely

that over the course of a season as both snow and ice accumulate, the dominant source

of 37 GHz emission changes (Figure 5.8).
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Figure 5.8. The idealized depth of emission at 37 GHz
and seasonal evolution of snow and ice in the tundra
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Figure 5.8 shows how the depth of emission can change throughout a season
due to seasonal variability in snow and ice cover properties. As such, at the end of the
season, lake ice is not contributing much to emission at 37 GHz. The implications of the

theoretical depth of emission at 37 GHz will be discussed further in Section 5.5.
The PCA was useful for generalizing patterns in ATb37"19 throughout the time

series; however, component loadings are not useful for visualizing the spatial patterns. It
is clear that PC 1 is the dominant spatial trend; therefore, the year that loads highest into

that component would be representative of the spatial pattern being summarized. In
order to visualize the difference between components, the years which had the highest

loadings were mapped. EASE grid data can be displayed as a grid of 25 ? 25 km cells
with a single value for each cell. However, for simplicity of display and comparison, a
smoothed surface was generated using inverse distance weighting (IDW) interpolation of
the EASE grid centroid values (Figure 5.9).
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Figure 5.9. Maps of the seasons with the highest loading in each PC

The spatial pattern of ATb37"19 is clearly unique between the different
components. The map of PC 1 (1997/98) shows a very distinct west to east longitudinal

gradient in ATb37"19. The lowest values (- 39 ATb37"19) are located to the west, and there
is a longitudinal gradient eastward to higher values (-23 ATb37"19) in the east. This
pattern is somewhat different than the other PCs shown in Figure 5.9 and very different
than the lake cover fraction. However, consistent to PC 1 , PC 2, and PC 3 is that the

lowest ATb37"19 is located in the southwest corner of the domain. These spatial patterns

and the longitudinal gradient in PC 1 suggest that there is an inter-annually consistent

systematic influence on ATb37"19. If the pattern is not related to lake faction then it could
be related to land cover or to differences in snow accumulation. To investigate a

possible relationship between ATb37"19 and land cover, the Natural Resources Canada
(NRCan) AVHRR 5 km land cover classification for the eastern NWT was mapped along

with PC 1 and PC 2 (Figure 5.10).
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AVHRR Land Cover Classification with PC 1 (1 997-98) AVHRR Land Cover Classification with PC 2 (1 97B-79)
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Figure 5.10. The ATb3719 of 1997-98 (PC 1) and 1978-79 (PC 2)
over the NRCan AVHRR land cover classification

Figure 5.10 suggests that the spatial pattern summarized by PC 1 could in fact
be a product of the change in land cover from transitional forest to tundra. The lower
values to the west correspond roughly with the edge of the transitional forest class. This

pattern matches with similar inter-annually consistent spatial pattern of SWE seen in the
boreal to tundra transition of northern Manitoba (Derksen et al., 2005). The spatial

domain of Figure 5.10 is highlighted with this SWE band (Figure 5.11).
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Figure 5.11. The inter-annually consistent Canadian SWE band
Adapted from Derksen and Mackay 2006
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Derksen and MacKay, 2006, characterize the SWE band primarily by satellite

passive microwave retrievals, but they describe how it is also evident in an independent

reanalysis of surface observations combined with a simple snowpack model by Brown et

al., 2003. What is not clear, however, is whether or not the pattern in ATb37"19 shown in

the PC 1 is due to the change in land cover or to changes in snow cover as a result of

differences in land cover. Hence, the transition in ATb37"19 cannot be confirmed without
other sources of data.

5.4.3. Spatial PCA on Sub-set of Data

The domain for the spatial analysis was reduced to include only 27 EASE grid

cells with predominantly tundra or barren land cover. The objective was to run a PCA

analysis again on a sub-set of data to minimize the influence of this land cover transition.

For this analysis, lake fraction was again included. Longitude was also added to see if

there are similar east-west trends in the second PCA. The percent variance explained

by the first 10 components was plotted (Figure 5.12).
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Figure 5.12. The percent variance explained by the first 10 components
The variance explained by the first component was 42%, which is much less than

the over 60% explained by the first component in the original PCA (Figure 5.5). This

suggests that the first component in the new PCA may not be as dominant throughout
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the time series. To compare the components with the original data, the loadings for the

first six components were plotted (Figure 5.13).
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Figure 5.13. Component loadings for the PCA of April 1 to April 10 ATb37"19 and
lake cover fraction in the subset of 27 EASE grid cells over a 30 year time period

The first principal component loads heavily into far fewer seasons than in the

original PCA and is not well correlated to longitude or lake fraction. However, longitude

is loaded heavily into the second component. This suggests that there may be

systematic patterns in ATb37"19, correlated to longitude, in any year loaded heavily into
PC 2. The fifth component again reflects the pattern of lake fraction, however, there are

only two years which are predominantly loaded positively into PC 5 (1981-82 and 1995-

96). Component six is interesting in that it reflects a spatial pattern of ATb37'19 seen in
only two seasons (1982-83 and 1983-84). It is evident from Figure 5.13 that changing

the spatial domain from 41 EASE grid cells across different land cover types to a subset

of 27 with predominantly tundra land cover has changed the distribution of component

loadings. In order to visualize the difference between the components, the seasons

which had the highest loadings for the first four components were mapped (Figure 5.14).
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Figure 5.14. Maps of the seasons with the highest loading in each PC
The longitudinal trend in ATb37"19 seen in the original PC 1 (Figure 5.9) is no

longer present in any of the first four PCs using the sub-set of EASE grids. However, the
southwest corner of the new domain has a consistently lower ATb37"19 than any other
area. This is the dominant spatial pattern in all of the first four PCs shown in Figure 5.14.
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PC 1 shows the greatest range in ATb37"19 within the image, from -24 to -35, while the
other three images show a range of only 6 K. However, by taking the subset of EASE

grids, the range in ATb37"19 is much less than in the original PCA. The lowest ATb37"19
seen in the southwest corner of the new domain could still be a product of a change in

land cover. The AVHRR landcover classification was plotted with the first two

components of the subset PCA (Figure 5.15).
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Figure 5.15. The ATb37"19 of 1999-00 (Subset PC 1) and 2003-04 (Subset PC 2)
over the NRCan AVHRR land cover classification

Figure 5.15 suggests that even in the subset of EASE grids, there could still be a

relationship between ATb37"19 and variability in land cover. However, little transition to
forest was observed in this area during various flights in and out of the Daring Lake

Camp. Despite the apparent influence of land cover in the south-west corner, the subset

of ATb37"19 data exhibit more spatial variability from year to year than the original dataset.

This is evident in the factor loadings as well as in the percent variance explained plots

which show much less variance explained for PC 1 in the subset of data. It is important

to note that neither the original nor the subset PCA suggest that lake fraction is strongly

spatially correlated to the end of winter ATb37"19. Furthermore, without snow cover data,
the gradient in ATb37"19 across the study domain cannot be linked entirely to differences
in land cover. Since snow data for this study were collected only in one EASE grid cell, it
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¡s also difficult to compare regional ATb37"19 to snow cover. However, a trans-continental
transect from Fairbanks Alaska to Baker Lake NWT (SNOWSTAR) was conducted in

2007 as described in Derksen et al. (2009). Although not entirely coincident with the

domain used in this study, snow surveys taken along this transect do not show

differences in SWE to help explain the observed differences in ATb37"19 seen in PC 1.
However, the transect was conducted in the 2006-07 season which has the highest

component loading in PC 4. Figure 5.14 shows that in PC 4 there was little difference in

ATb37"19 except in the southwest corner which was not on the transect route.

Unfortunately, no similar dataseis exist for other seasons.

It is clear from both the spatial and temporal analysis that there are changes in

ATb37"19 within and between different seasons. Moreover, lake fraction does not seem to

have a systematic influence on ATb37"19; however, land cover may have a profound
influence in the transition from forest to tundra.

5.5. Comparison of Satellite Tb to in-situ SWE

5.5.1. Introduction

The following section addresses the fourth assumption:

4- The difference between 1 9 and 37 GHz can be used to estimate SWE

Several research projects have exploited the good correlation between increasing snow

depth and decreasing microwave emission due to snowpack volume scatter. As

summarized in Chapter 2, early work showed that shorter wavelength (-37 GHz)
emission was more sensitive to the structure and condition of the snow, while longer

wavelength emission (-19 GHz) was affected more by underlying soil condition (Foster

et al., 1980). The first operational and widespread algorithms developed to estimate

SWE from satellite passive microwave data were those of Chang et al. (1990) and

Goodison and Walker (1995).
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The algorithm described by Goodison and Walker (1995) was developed by

Environment Canada (EC) for non-forested, prairie environments and utilizes the 19 and

37 GHz vertically polarized channels:

SWE (mm) = -20.7 - 49.27[(Tb37V - Tb19V)/18]

The Chang algorithms for SWE and snow depth have been applied hemispherically and

utilize the 19 and 37 GHz horizontally polarized channels:

SWE (mm) = 4.8 (Tb19H - Tb37H)

Snow Depth (cm) = 1.59 (Tb19H - Tb37H)

The structure of the algorithms is very similar in that they were developed using

the difference between lower frequency 1 9 and higher frequency 37 GHz data. The EC

algorithm describes an empirically derived linear relationship between SWE and ATb37'19
while the Chang algorithm was derived using theoretical relationships between ATb37"19
and SWE. The Chang algorithm assumes a snow density of 0.300 g/cm3 and is intended
for snow depths under one metre.

Neither the Chang or EC algorithms were derived for nor have been properly

parameterized for tundra environments. However, the use of ATb37"19 began with these
algorithm approaches and has been embraced in countless other studies. Hence,

comparing in-situ observations to ATb37"19 is an obvious place to start.
5.5.2. Comparison of in-situ SWE to ATb37"19
The mean ATb37"19 from April 1 to April 10 from the AMSR-E sensor were

compared to the six years of in-situ SWE data described in Chapter 4 as well as the

SWE data from the preliminary survey conducted in 2003 (described in Chapter 3).

Vertically polarized 19 and 37 GHz data were used to minimize the effect of any surface

ice lenses which may be present (Rees et al., 2010). The ATb37"19 were plotted against
the seven years of in-situ SWE (Figure 5.16).
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Figure 5.16. In-situ SWE plotted against corresponding
April 1 to April 1 0rnean ATb37'19

The plot of ATb37"19 and ¡n-situ SWE shows some interesting patterns. Below 140

mm, the points show a positive linear relationship. As the ATb37"19 increases so does the
¡n-situ SWE. Above 140 mm, the relationship is linear but in the opposite direction

(although there are only three points in the plot). The inflection about 140 mm is

interesting because it corresponds with the theoretical and observed reversal in 37 GHz

with increasing SWE (see Section 2.4.2.2). Below and above 140 mm, the scatter of

points is quite linear, but together the points resemble a quadratic curve. A curve

estimation regression analysis was performed using SPSS, and the resulting coefficient

of determination (r2) was found to be 0.89. This means that a quadratic function can be

fitted to the points and explains 89 percent of the variability in the data (p < 0.05). The

function is as follows:

SWE = - 2.02 ± 74.O8 - (-0.028(-169.08 - 7ft37_19)
-0.014
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It is interesting that the observed SWE vs. ATb37"19 can be described by the
curve; however, the shape of the curve does not compare favorably to the expected

linear relationship between ATb37"19 as developed by EC and Chang. The quadratic

function was plotted along with the linear relationships of SWE estimated using the EC

algorithm (Figure 5.17).
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Figure 5.17. The quadratic function between ATb37'19 and in-situ SWE plotted
with the linear relationship using the Goodison algorithm

Figure 5.17 clearly shows the difference between the quadratic function derived

and the EC linear relationship. The main concern is not that the points do not fit directly

on the EC line, but that below 140 mm SWE they show a completely opposite

relationship. The linear EC relationship suggests that as the SWE increases, the

difference between 19 and 37 GHz should get larger (a lower ATb37"19). The quadratic
shows that below 140 mm SWE, as the SWE increases, the difference between 19 and

37 GHz decreases. Beyond 140 mm SWE, the quadratic shows a relationship in the
same direction as the EC line.
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The inverse relationship between the expected EC linear and in-situ SWE
derived quadratic is quite pronounced. It is possible that the difference between the
relationships is a product of how satellite scale in-situ SWE is being defined. A single
value does not account for any variability in sub-grid SWE. However, even when the
variability in SWE described in Chapter 4 is considered, it is difficult to fit the data to a
slope similar to the EC algorithm. From Chapter 4, a coefficient of variation (CV) of 0.40
was considered and plotted with each mean in-situ SWE against ATb37"19 (Figure 5.18).
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Figure 5.18. In-situ SWE plotted with corresponding April 1 to April 10 mean
ÛTb37-i9 considering the 0.40 CV in SWE

The dashed line in Figure 5.18 shows that a slope similar to the EC is possible if
the variability in SWE is considered. However, given the way in which the spatially
weighted mean SWE are calculated, it is not likely that the dashed line represents the
true relationship between SWE and ATb37"19. Figure 5.18 does raise an interesting point
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about how grid cell SWE is defined based on sub-grid measurements. Moreover, it also

raises the issue of what proportional effect sub-grid snow and terrain have on EASE grid

scale Tb. The SWE used in Figure 5.18 is calculated using a spatially weighted mean.

This method weights EASE grid SWE based on the spatial proportion of sub-grid SWE in

defined terrain categories. On the other hand, EASE grid Tb is assumed to be an equal

product of emission from all snow cover, terrain and landscape features. However, this

may not be the case as certain features may have a disproportionate influence on EASE

grid Tb. These issues will be investigated in more detail in Chapter 6.

The relationship between ATb37"19 and in-situ SWE can be investigated further by
looking at the behavior of the individual 37 GHz and 19 GHz frequencies. To produce a

linear relationship similar to the EC line, we would expect the 19 GHz Tb to be generally

similar between years and 37 GHz Tb to be lower for the years with higher SWE. The

seasonal evolution in 19 and 37 GHz for the 2003 to 2008 was plotted in Figure 5.2 and

shows that each year there is relatively little change in the 19 GHz compared to a large

drop in 37 GHz Tb. However, the end point (April 1 to April 10) of 37 GHz Tb is not the

same from year to year. The differences in Tb between seasons and in-situ SWE

observations are compared in Table 5.1 .

Table 5.1. Comparison of 19 and 37 GHz Tb for April 1 to April 10
along with in-situ SWE observations

2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 Min Max Range
19 GHZ
37 GHZ

240

203
246

222

246

216
248

222

246

224

240

214

242

212
240

203

248

224

8

21

ATbT -37.0 -25.2 -29.6 -26.7 -21.7 -26.7 -30.0 -37.0 -21.7 15.3

SWE 102 164 117 171 138 119 106 102 171 69.0

Table 5.1 shows that the years with the greatest amount of SWE (2003/04 and

2005/06) have the lowest ATb37"19. In these years, the 19 GHz Tb is quite similar to other
years; however, the 37 GHz Tb is much higher. The years with the lowest SWE (2002/03,
2004/05 and 2008/09) had the lowest 37 GHz emission and the lowest ATb37-19
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5.5.3. Resolving Uncertainty in SWE vs ATtr lö

It is clear from Figure 5.2 and Table 5.1 that the expected relationship of lower 37

GHz for greater SWE, is not present in this dataset. It would seem from the data that the

greater the SWE the higher the 37 GHz Tb. As outlined in Chapter 2, microwave

emission measured by spaceborne sensors comes from the snow volume and from the

underlying ground. As such, Tb at 37 GHz will decrease with increasing snow grains

because more ground and snow emission is scattered away from the sensor. However,

at a certain threshold of SWE depth there is saturation of the scattering and self

emission from the snowpack. This can occur in certain snowpacks at as low as 30 cm in

snow depth given certain grain size conditions (Sturm et al., 1993). Usually Tb will

decrease with snow grain size as larger grains are more effective at scattering and

absorbing emitted energy (Chang et al., 1997). Hence, grain size can have a strong

influence on Tb independently of SWE. The theoretical extent to which grain size

influences Tb at 18 and 37 GHz is shown in Figure 5.19.
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Figure 5.19. Calculated brightness temperatures versus SWE for horizontally
polarized data at 50° incidence angle (modified from Chang et al., 1987)
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The influence of grain size shown in Figure 5.19 is quite profound. For the depth

of SWE observed in the study area, a grain size shift from 0.3 mm to 0.5 mm would

result in a difference of ~ 65 K at 37GHz. It is important to note that Figure 5.19 from

Chang (1987) does not consider the threshold at which 37 GHz Tb reverses due to

saturation and self emission. Field observations show that the dominant grain size in the

snowpack from year to year is 0.5 mm. There is increasing grain size in indurated layers

and up to 1 cm grain size in basal depth hoar. However, as described in Chapter 4, the

traditional basal depth hoar layer usually occupies a relatively small fraction of the snow

pack in each season and develops mainly between vegetation outcrops or tussocks.

Consequently, there were not large differences in grain size observed between years.

However, with site to site differences and the qualitative nature of grain size

descriptions, it is difficult to infer any statistically significant difference in grain size from

high snow to low snow years. The biggest difference between years seems to be in the

depth of SWE rather than in stratigraphy.

Lower ATb37"19 for the high snow years may be due to the reversal in 37 GHz

described in Section 2.4.2.2. The reversal in 37 GHz Tb, shown in Figure 2.5, suggests

that Tb follows a decreasing curve up to about 150 mm then begins to increase. If this

were the situation occurring in 2003/04 and 2005/06, we would expect the seasonal

evolution of 37 GHz Tb to follow a similar pattern. The 37 GHz Tb for 2003/04 and

2005/06 were plotted in order to examine their evolution throughout the season (Figure

5.20).
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Figure 5.20. Seasonal evolution in 37 GHz
from Nov 1 to April 30 in 2003/04 and 2005/06

Figure 5.20 does show a slight reversal in 37 GHz Tb in both the 2003/04 and
2005/06 seasons. A minimum Tb is observed around days 58 to 67 rather than the days

91 to 100 used to compare with in-situ SWE in Figure 5.16. However, re-computing the

ATb37"19 using the day 58 to 67 Tb results in only a slight decrease from -25 to -26 K in

2004 and from -27 to -28 in 2006. Although the observed reversal in 37 GHz may impact

eventual algorithm development, it does not help to explain why other seasons with

lower SWE have much lower minimum Tb at 37 GHz and larger ATb37"19.

Perhaps the explanation lies somewhere in understanding how the emission from

the underlying ground changes from years with high SWE to years with low SWE. The

theoretical maximum depth of emission at 37 GHz is shown in Figure 5.8. As the snow

depth increases, the emission from the ground and lake ice is muted by the overlying

snow grains. As such, in thin snow years, the emission at 37 GHz should have a greater

contribution from the underlying surfaces. Moreover, in shallower snow years, there is

less overlying snow to mask the comparatively large grained basal depth hoar and to

cover bare ground (Figure 5.21).
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Figure 5.21. Theoretical depth emission at 37 GHz
given different snow cover conditions

Figure 5.21 suggests that emission at 37 GHz should change with increasing

snow depth. This moves the maximum depth of emission further away from the

underlying ground and depth hoar. Hence, the low snow years would see lower Tb at 37

GHz if lake ice, depth hoar, and bare ground had the effect of decreasing emission.

Moreover, higher snow years would see higher Tb at 37 GHz if decreasing lake ice,

depth hoar, and bare ground had the effect of increasing emission. Verifying these

relationships and their effect on ATb37"19 is not possible using satellite scale data. To
investigate these issues further, the multi-scale Tb data from airborne and ground based

sensors described in Chapter 3 will be used.
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CHAPTER 6: APPLICATION OF MULTI-SCALE PASSIVE MICROWAVE DATA
6.1. Introduction

Defining a relationship between in-situ SWE and satellite Tb data is a necessary

step for operational algorithm development. However, as shown in Chapter 5, the

relationship between measured tundra SWE and AMSR-E Tb does not follow expected

patterns. Traditional techniques rely both on a decrease in 37 GHz Tb as SWE

increases from the start of a winter season to the end of the season and on little change

in 1 9 GHz Tb throughout the winter. These patterns of satellite Tb were evident for the

study area data; however, the end of season ATb37"19 values relate to SWE differently

than expected. Normally, a greater ATb37"19 relates to higher SWE, while a lower ATb37"19
relates to lower SWE. For the data analyzed in Chapter 5, the relationship between

ATb37"19 and SWE was the opposite. Furthermore, Chapter 4 showed that there is
considerable variability in sub-grid SWE across different types of terrain. The spatially

weighted mean provides a generalized SWE value for comparison with Tb. However,

there is little understanding of how microwave emission from sub-grid terrain and snow

cover aggregate into EASE grid Tb.

These issues are difficult to resolve using coarse resolution satellite data as Tb is

a function of more than just SWE. Within a single EASE grid, there are other snow and

underlying ground parameters, outlined in Chapter 2, which contribute to Tb (Figure 6.1).

-------------------------------------------------- 25 Km

Figure 6.1. Contributions to end of winter satellite scale Tb
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In order to improve the confidence in satellite SWE retrievals it is necessary to

investigate the contribution of Tb from sub-EASE-grid scale features. The focus of this

chapter is to address these issues through the use of Tb measurements acquired from

ground based and airborne radiometers. To simplify the discussion, only vertically

polarized data are used, and the airborne Tb data are categorized into either high, mid
or low resolution based on aircraft altitude (Table 6.1).

Table 6.1. Relative resolution of aircraft and Tb data
Aircraft
Altitude

Year Resolution Radiometer Footprint (m)
6.9 GHz 19GHz 37GHz

277 m 2005
2008

Near width 66

High Far width 81
Depth 121

45
52
80

45
52
80

828 m 2005 Near width 197
Mid Far width 243

Depth 363

135
155
241

135
155
241

2207 m 2005 Near width 524
Low Far width 646

Depth 970

360
414
642

360
414
642

2757 m 2008 Near width 655
Low Far width 808

Depth 1211

450
517
802

450
517
802

6.2. Application of High Resolution Tb Data

6.2.1 . Comparing Tb Data to in-situ SWE

As outlined in Chapter 3, airborne Tb data were collected along east-west and

north-south flight lines in both 2005 and 2008. In-situ snow depth, density and SWE

measurements were recorded at sites along these lines. Ground based radiometer sites

were situated in close proximity to the Daring Lake Camp (Figure 6.2).
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Figure 6.2. Flight line locations and ground based sites

A GIS database was created to link airborne radiometer data with spatially

coincident in-situ snow measurements. For the 2005 and 2008 datasets, Tb data were

related to in-situ sites which fell within an airborne footprint (Figure 6.3).

? 9 and 37 QHz

30 depth
measurements

5 density
measurements

Radiometer

Footprint

Figure 6.3. Relating Tb to in-situ snow measurements in the 2005 dataset
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When an in-situ site was located outside of footprint areas, Tb was assigned from

the closest footprint. However, this was done only when in-situ sites were less than 80 m

from a footprint location and in areas of relatively homogenous terrain. At all sites, SWE

were derived from the average of the 30 depth and the five density measurements. The

STDEV and CV of SWE were also calculated for each site from the depth and density

data. For the 2008 dataset, a similar approach was taken.

In 2008, there were also data collected in transects along the flight lines using an

automated Magna Probe snow depth recorder. The Magna Probe facilitated the efficient

collection of snow depths along flight transects. Depth data were collected at 5 m

intervals with location information automatically recorded by the probe. Snow cores for

density were measured on each transect at 100 m intervals in homogenous terrain and

at shorter intervals when the terrain varied. Densities were derived from these snow

cores and applied to the nearest snow depth measurement, in a similar terrain category

to estimate SWE.

The comparison of Tb to SWE measurements was different using the Magna

Probe data collected in 2008. Since the Magna Probe data were acquired along flight

lines, multiple points were available within each airborne footprint. However, due to the

in-flight motion, not all Tb footprints were aligned with pre-determined flight lines. In

order to make the best comparison to Tb, only probe measurements which fell at least

10 m within an airborne footprint were used. Furthermore, only airborne footprints with at

least 10 magna probe measurements were used (Figure 6.4).
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Figure 6.4. Relating Tb to SWE measurements
using the 2008 Magna Probe dataset

From the probe measurements, the average SWE was calculated for comparison with

Tb. The STDEV and CV in SWE were also calculated for each footprint location.

For the ground based radiometer measurements, SWE was measured multiple

times within the radiometer footprint. The average SWE was used for comparison with

Tb. The Tb from high resolution aircraft and ground based data were plotted against

SWE (Figure 6.5).
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Figure 6.5. High resolution airborne and ground based Tb
compared to in-situ SWE

Figure 6.5 shows no clear relationship between either 37-19 GHz or the

individual 37 and 19 GHz Tb and SWE. The lack of relationship suggests either that

there is little relationship between tundra SWE and Tb as a whole or that there are other
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influences on Tb not being considered. Nonetheless, the Tb at 19 GHz SWE was

consistently higher and had a lower range than the 37 GHz Tb. The 37 GHz Tb is more

influenced by differences in snow cover properties and should be more variable.
However, the 37 GHz Tb is clearly not linked to SWE as a large range of Tb were

measured for a given SWE. No relationship at 37 GHz is obviously a primary reason that

there are no strong relationships with ATb37"19. Figure 6.5e (2008 Magna Probe data)
shows the most promising relationship between ATb37"19 and SWE. There is a very weak
negative relationship indicating that as SWE increases the ATb371 9 decreases.
However, this relationship may be more evident in these data because the Magna Probe

is limited to snow depths of < 120 cm. Hence, there are very few Magna Probe SWE

data above 200 mm to produce the scatter shown in 6.5a and 6.5c.

The data plotted in Figure 6.5 suggest that there are indeed factors in the tundra

other than SWE which are influencing Tb, especially at 37 GHz. As such, the next step is

to identify as many of these confounding factors as possible. The Tb and SWE data

need to be examined over specific terrain and landscape areas individually instead of

being plotted together. For flat tundra and lakes, it is relatively easy to delineate

homogenous footprints in the high resolution airborne data. For slopes, it is more difficult
because slope and aspect characteristics are rarely homogeneous even within a 50 m

scale measurement. For instance, most slopes are adjacent to wind scoured plateaus,

and even high resolution airborne footprints are often a combination of both terrain

types. With the ground based radiometers, it is easy to define which terrain type the data

are being collected in; however, the instrument was not used on slopes due to platform

stability in uneven terrain. Due to the complexity of defining slope terrain in footprint

areas, slopes of all aspect and angle were grouped together into a single class.
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Because of the reversal in 37 GHz Tb with increasing SWE, described in

Sections 2.4.2.2 and 5.5.2, the Tb data were grouped into high or low SWE categories.

An initial threshold of 120 mm was chosen for the point of inflection; however, the

reversal in Tb for non-tundra snowpacks has been documented as being between 120

and 180 mm (De Seve et al., 1997; Matzler et al., 1982; Matzler, 1994).

For the 2005 and 2008 sites, terrain categories were determined in the field

during in-situ data collection. The site data were plotted in a GIS and field observations

of terrain were compared with the terrain classification described in Section 3.3.2. Sites

were used for comparison with Tb if the terrain was homogenous within the footprint.

With the Magna Probe data, there were no in-situ observations of terrain. As such, the

DEM classification was used to select footprint terrain. This process was straightforward

for lakes, flat tundra, and low slopes, however, it posed problems for steep slopes and

plateaus. There were only two footprints with only steep slope terrain and one footprint

composed entirely of a plateau. As such, plateaus were not used, and steep slope

footprints were also selected if they overlapped with steep slope categories. Although

not ideal, this should give some sense of how Tb compares to SWE in and around steep

slopes.

6.2.2. Flat Tundra

6.2.2. 1. High Resolution Airborne Radiometer Data

As outlined in Chapter 3, flat tundra comprises approximately 35 % of the study

area. Areas of flat tundra were relatively simple to identify in the field and in the terrain

classification from the DEM. Spatially coincident in-situ and magna probe SWE from

homogenous flat tundra sites were compared to Tb from the 2005 and 2008 high

resolution airborne data and from the 2007 ground based data (Figure 6.6).
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Figure 6.6. Comparison of high resolution airborne and ground based Tb
with SWE over flat tundra

Figure 6.6 shows that there is a much better relationship between ATb37"19 and SWE
over areas of homogenous flat tundra than there is when considering the whole dataset

as shown in Figure 6.5. It is also evident that reversal in the slope appears to occur
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around 120 mm of SWE. Least squares regression was used to find the breakpoint of

SWE, where the reversal occurs, which explains most of the overall variance.

Segmented regression uses an iterative approach where the breakpoint location is

changed until the overall r2 is maximized. The overall r2 between Flat Tundra SWE and
ATb37"19 was maximized when the breakpoint in SWE was between 115 and 118 mm.

However, placing the breakpoint between 115 and 118 mm instead of 120 mm explains

1% more variance (r2 from 0.17 to 0.18). Due to the scatter in Figure 6.6e, the overall r2
values are not very high. A breakpoint between 110 and 130 mm yields a very similar r2,
and 120 mm is a good approximation.

Using the regional density derived in Chapter 4 of 0.294 g/cm3, 120 mm of SWE
corresponds to 35 cm of snow depth. This depth threshold is very similar to the

determination of Sturm et al. (1993) (using ground based radiometer measurements)

that volume scatter produces a decrease in 37 GHz Tb due to volume scatter to a critical

snow depth of 31 cm. At depths above this threshold, emission from the snowpack

drives an increase in Tb.

6.2.2.2. Ground Based Radiometer Data

Ground based radiometer data were collected in 2007. At each site, the Tb of the

undisturbed snow pack was measured with the radiometer system. Measurements with

a 1 second integration time were averaged over a 15 minute observational period. At

some sites, snow layers were carefully removed, and the Tb was again measured. A

summary of the 15 minute averaged Tb measurements was used to compare with

snowpit observations. Because their layers are very distinct, it was easy to remove each

layer while preventing any significant disturbances to the snow surface roughness

between the two sets of observations. No modifications were made to the position or

orientation of the radiometers, and measured snow depth and SWE were noted with the
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removal of each layer. The change in SWE and Tb as the snow layers were removed

was plotted at two flat tundra sites (Figure 6.7).
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Figure 6.7. Ground based radiometer observations of snow removal
at two flat tundra sites

Figure 6.7 shows that there is a definite reversal in the Tb at 37 GHz at both
sites. Site 1 also shows a drop of almost 10 K in 19 GHz Tb which is normally thought of

as being insensitive to snow cover. The left panel of Figure 6.5 shows that Site 1 has a

fairly large grain size (-2.5 mm) and dense (0.440 g/cm3) slab layer in the middle of the
snow pack in addition to a dense depth hoar layer at the base of the pack. Together,

these layers could be enough to cause scattering (lower Tb) at 19 GHz. The snow pack

at Site 2 has a mid-pack layer with much smaller grain size and a lower density than at

Site 1 . Consequently, the Tb at 19 GHz for Site 2 is more stable as the layers were

removed.

188



Both sites do not pin-point the exact reversal in 37 GHz as snow layers were

removed in irregular intervals. However, the data suggest that the reversal in 37 GHz
would occur between 40 and 120 mm SWE at Site 1 and between 90 and 150 mm SWE

at Site 2. These observations help to suggest that the reversal at 37 GHz occurs

somewhere at or below 120 mm of SWE.

6.2.2.3. Summary of High Resolution Tb Data over Flat Tundra

When the high resolution airborne and ground based Tb with SWE over flat

tundra were plotted (Figure 6.6), the slope of the line below 120 mm of SWE is in a

similar direction to other algorithms which use the ATb37"19 approach. This suggests that
a linear relationship could be applied to estimate SWE (< 120 mm) over flat tundra.

However, the strength of the relationship varied among the different data sets. The

correlation coefficients for each dataset are summarized in Table 6.2.

Table 6.2. Summary of the strength of the relationship
between SWE and ATb37"19 over flat tundra

2005 Site
Data

2008 Site
Data

Magna
Probe

Ground
Based

All Data

<120mmSWE Pearson's r 0.47* 0.37 0.60* 0.76* 0.40*
>120mmSWE Pearson's r 0.13 N/A 0.54* 0.54 0.43*

*denotes that the relationship is significant at 0.05

The Magna Probe and ground based radiometer data show the strongest

relationship between SWE and ATb37"19 both above and below 120 mm SWE. If a linear

relationship exists between Tb and SWE it should be evident in the Magna Probe data

because a transect of measurements provides the best representation of within-footprint

SWE. Furthermore, ground based radiometer data should provide a good opportunity to

examine the relationship between SWE and Tb with little mixing of terrain and land

cover. The relationship between SWE and ATb37"19 was plotted using only the Magna
Probe and ground based radiometer data (Figure 6.8).
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Figure 6.8. All Magna Probe and ground based SWE from flat tundra vs ATb37"19
By using only the Magna Probe and ground based data, the r improves to 0.50 (p

< 0.05) for SWE above 120 mm and an r of - 0.51 (p < 0.05) for SWE below 120 mm.

The linear equations derived from least squared regression of these relationships are

shown in Table 6.3.

Table 6.3. The linear equations between ATb37'19 and SWE
for the Magna Probe and ground based data

<120mmSWE
Regression Equation

SWE = 53 -1.1 9(ATtT I>120mmSWE | SWE = 203 + 1.16(ATtT a) | 0.50 | 0.25

r I R' I SEE (mm)
0.51 0.26 16.9

20.5

*Slope and intercept significant at 0.05 for both models
Because of the reversal in 37 GHz Tb around 120 mm, the slopes of the two

equations are in opposite directions. Hence, the challenge is in knowing which

relationship applies given a certain Tb. For example, if a ATb37"19 of -30 K were recorded
by a sensor for flat tundra, using these equations, two values of SWE would be

estimated (94 mm and 154 mm).

As such, it would be helpful to know the proportion of the flat tundra in the study

area with a SWE above and below 120 mm. However, if the study area had both areas

above and below 120 mm, then both equations would need to be used. If the flat tundra

was mostly below 120 mm SWE, then a single equation could be applied. Given the

variability in SWE, it is likely that there are no large areas with SWE consistently above

or below 120 mm. Even within high resolution airborne footprints, there would be areas

190



with SWE above and below 120 mm. The distributions of SWE within flat tundra were

plotted for each survey year (Figure 6.9).
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Figure 6.9. The distribution of SWE on flat tundra
During most of the survey years, a higher percentage of flat tundra sites had less

than 120 mm of SWE. In 2005 and 2009, more than 80 % of the site SWE were below

120 mm., while in 2008 79 % of the site SWE were below 120 mm. However, in years

with greater snow accumulation, the site SWE can be equally above and below 120 mm

(2004) or predominantly above 120 mm (2006). Figure 6.9 shows that a single equation

for relating Tb to SWE may not apply and that prior knowledge would be needed to know

which equation is appropriate.

6.2.3. Lakes

6.2.3. 1. High Resolution Airborne Radiometer Data

Lakes comprise approximately 26 % of the study area and are the easiest to delineate in

the field and from the terrain classification. Spatially coincident in-situ and Magna Probe
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SWE from lakes were compared to Tb from the 2005, 2008 high resolution airborne data

and from the 2007 ground based data (Figure 6.10).
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Figure 6.10. Comparison of high resolution airborne
and ground based ATb37'19 with SWE over lakes

Figure 6.10 shows that the relationships between SWE and ATb37"19 are not as
strong over lakes as they are over flat tundra. However, the 2008 Magna Probe SWE

does have a moderate negative relationship with ATb37"19 (r = -0.41 , ? < 0.05). The
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strength of the relationship is similar to that on flat tundra; however, the scatter of points

is quite large. The other data sets do not show any significant relationship between
ATb37"19 and SWE. All lake sites were compiled in Figure 6.1Oe. There is a weak

negative correlation of -0.24 (p < 0.05) between SWE and ATb37"19 and there is a high
range of possible SWE for a given ATb37"19. For example, between -10 and -20 ATb37"19,
the SWE ranges from below 50 mm to around 150 mm. As a result, at most lake sites,

similar to flat tundra, there are factors other than SWE which are influencing Tb.

The Magna Probe SWE (Figure 6.10 c) show the strongest relationship between

ATb37"19 and SWE. The Magna Probe data were from transects on small number of lakes

across the entire width or length of a lake. In contrast, the site data were collected in a

localized area with often only one site per lake. As such, the site data are compared to

single footprints from different lakes. The Magna Probe footprints plotted (n = 45) come

from only five different lakes. Approximately half of the footprints (n = 23) were taken

from a 1.8 km transect on a single lake (Daring Lake). Each footprint had between 10

and 14 SWE measurements. The 23 Daring Lake footprints were plotted separately as

ice and bathymétrie conditions across the transect are similar relative to other lakes

(Figure 6.11).
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Figure 6.11. Comparison of high resolution airborne ATb37
with Magna Probe SWE over Daring Lake

* Significant at 0.05
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The relationship between ATb37"19 and SWE on Daring Lake is very strong (r = -0.87, ? <
0.05). This suggests that Tb is being influenced by SWE on a single lake. The lack of a

similar relationship when plotting all lakes together reinforces the theory that the

relationship between Tb and SWE is different depending on lake and ice properties. To

see where the uncertainty in ATb37"19 comes from, the 19 and 37 GHz Tb over lakes
were plotted (Figure 6.12).

a) 2005 in-situ site SWE from Lakes vs. 37 and b) 2008 in-situ site SWE from Lakes vs. 37 and
19GHzTb
• 19GHz
o 37GHz

160 180

o o o
o o

r = - 0.26

200 "g

150 ^
100

50

200 220

Tb(K)
240 260

19GHzTb
• 19GHz
o 37 GHz

160

o o

200 -JJT
J.

150 ^
- 100

50

180 200 220

Tb(K)
240 260

c) 2008 Magna Probe SWE from Lakes vs. 37
and 19 GHz Tb
• 19GHz
o 37 GHz

»Significant at 0.05

160 180

200 £
E

150 ^j
100

50

200 220

Tb(K)
240 260

d) 2007 in-situ site SWE from Lakes vs. 37 and
19GHzTb
• 19GHz
o 37GHz

160

r = -0.30 °

r = -0.68

200 "gT
g

150
1̂/1

100

50

180 200 220

Tb(K)
260

194



e) All SWE from Lakes vs. 37 and 1 9 GHz Tb
• 19GHz
o 37GHz

«Ko»

&>

h 200

150 ^
100

50

160 180 200 260

Tb(K)

Figure 6.12. Comparison of high resolution airborne
and ground based Tb with SWE over lakes

Figure 6.12 shows that there is scatter in both 19 and 37 GHz Tb for a given

SWE. However, there is more variability in 37 GHz Tb than in the 19 GHz Tb. Moreover,

as with ATb37"19, the Magna Probe data (Figure 6.12c) provide the strongest relationship

with 37 GHz Tb. The Daring Lake Magna Probe footprint 37 and 19 GHz Tb were plotted

(Figure 6.13).
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Figure 6.13. Comparison of high resolution airborne Tb
with Magna Probe SWE over Daring Lake

The Daring Lake data show that there is a clear relationship between Tb at 37

GHz and SWE with little change in 19 GHz Tb. When plotted together with the rest of the

lake footprints (Figure 6.12e), there ¡s a much higher variability in both 37 and 19 GHz

for a given SWE than in the Daring Lake footprints. Lake ice conditions (ice thickness,
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ice type, air bubble properties) have been shown to have an effect on active microwave
backscatter (Duguay et al., 2002) and more recently on the ability to simulate Tb,

especially at 19 GHz (Gunn et al., in review). Due to the complexities in simulating

emission from ice and snow, estimating SWE on a given lake remains a challenge.

6.2.3.2. Transect of Airborne Radiometer Data

Airborne data were collected in overlapping footprints along flight line transects

(Section 3.3.7). Hence, the nearly continuous Tb data can be plotted to see the

variability along lakes and how the Tb changes in the transition from lake to land. The

6.9 GHz Tb data were plotted along with 19 and 37 GHz Tb (Figure 6.14).
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Figure 6.14. Transect in Tb from lake to land for a portion of a 2005
high resolution airborne transect

The Tb at 6.9 GHz drops dramatically over lakes. The depth of emission at 6.9

GHz is great enough to be influenced by the water below lake ice. The presence of

water produces the sharp drop in Tb over lakes compared to land. The transition in Tb is

fairly sharp for the lakes on the left, in the middle and to the right of the figure. However,

the drop in Tb is more gradual near the edges of lake to the left as more ice is frozen to

the bottom of the lake which does not produce the same drop in Tb.
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The Tb at 19 GHz does not change as dramatically in the transition from lakes to

land. Moreover, Tb does not decrease and is slightly higher over lakes than it is over

land. Over lakes, there is less variability in Tb, especially on the lake to the right of the

Figure 6.14. This suggests that 19 GHz Tb is not affected by the underlying water in the

same way as at 6.9 GHz. The Tb is not dramatically lower over lakes, and there is little

sensitivity to differences in SWE. The transect confirms that the depth of emission at 19

GHz (approximately 2 m from Derksen et al., 2009) is above the water and below the

base of the snow pack. The slightly higher 19 GHz Tb over lakes could be due to the

difference in the physical temperature between lakes and land. The water under the ice

provides a heat source, more prominently in early winter. On land, the heat from

unfrozen soil in the active layer is depleted by mid winter. As a result, the snow ground

interface temperature drops throughout the winter (Olsson, et al., 2003). This maintains

a snow-ice interface temperatures several degrees warmer than the land snow-ground

interface temperatures throughout most of the winter (Sturm and Liston, 2003).

Over the land surface, the 37 GHz Tb varies the most of the three frequencies.

However, the variability in 37 GHz is much higher over land than over lakes. The 37 GHz

Tb is consistently lower than the 19 GHz Tb. This results in a negative ATb37"19 over both
lakes and land. The relative homogeneity in Tb at 37 GHz on lakes is due to the

consistency of the snow and ice surface compared to the complexity of snow depth and

stratigraphy on the land surface. Similar to 19 GHz, the 37 GHz Tb is also higher over

lakes than surrounding land. In Figure 6.14, there appear to be some differences in the

Tb at 37 GHz between the three different lakes surveyed on the transect. Unfortunately,

no supplemental data are available to quantify where these differences in Tb exist.

There are many potential lake parameters such as ice thickness, bubble concentration,

type (white or black), and lake depth, and whether or not the ice is frozen to bottom

which could influence microwave emission.
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6.2. 3. 3. Ground Based Radiometer Data

The ground based data collected in 2007 provide an initial examination of the

differences in Tb on lakes with different ice properties. Three sites were examined on

lakes where the ice was frozen to the bottom (FTB). Two sites were examined over deep

lakes (depth > 10 m). At each site, layers of snow were removed, and the Tb of bare ice

recorded (Figure 6.15).
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Figure 6.15. Ground based Tb observations over lakes

The 37 GHz Tb for bare ice is very similar (~ 260 K) at all lake sites. However,

there is less change in 37 GHz Tb from snow covered to bare ice on lakes FTB. On
lakes not FTB, the 37 GHz Tb increases by over 30 K and exceeds the 19 GHz Tb with

the removal of the snow pack. The 19 GHz Tb is lower on lakes not FTB, perhaps due to
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the ice temperature or other physical properties. All lake sites do not show much change

in 19 GHz Tb from snow covered to bare ice. However, the 37 GHz Tb is quite sensitive

to SWE on lakes. At each site there is a drop in Tb with the removal of the snow cover.

This reinforces the relationship between airborne 37 GHz Tb and Magna Probe SWE in

Figure 6.13. The data in Figure 6.15 provide a glimpse of how the differences in Tb may

be explained from different lake sites. However, the data are not sufficient to provide a

systematic analysis of how lake parameters influence Tb. This is an area which should

definitely receive attention in the future.

6.2.3.4. Summary of High Resolution Tb Data over Lakes

Microwave emission models are often used to simulate Tb under different snow

conditions (Rees et al., 2010). Models can also be applied to examine the effect of

different lake ice properties on both observed and simulated Tb (Kontu et al., 2008,

Gunn et al., in review). However, in the tundra, there are several lake ice questions

which still need to be addressed. Primarily, it should be determined why there seem to

be a range of Tb from a single lake and very different Tb observed over multiple lakes.

Emission models could be useful in order to run a Tb sensitivity analysis using different

lake and ice parameters. Possible variables include lake depth, ice type, ice thickness,

ice and snow ice interface temperatures, and the surface roughness. A model

parameterized for these variables would be useful for explaining the range of possible
Tb over tundra lakes. The results from model simulations would also help determine

which lake parameters need to be known in order to accurately estimate SWE over

lakes. Moreover, models may help to explain why there is a strong linear relationship in

some cases (Figure 6.11, 6.13), while not in others. Resolving these issues is certainly

important in understanding the contribution of sub-grid lakes on satellite scale Tb.
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6.2.4. Slopes

Slopes in the study area were classified according to slope and aspect. Low

slopes (<7°) of all aspects comprise approximately 24 % of the study area, while steep

slopes (>7°) make up only 1 1 %. Chapter 4 showed that snow on steep slopes is usually

significantly deeper than on low slopes. However, slopes of less than 7° did not have
significantly different SWE than that on flat tundra. As such, a similar relationship

between Tb and SWE as shown on flat tundra should exist on low slopes. Because SWE

almost always exceeds 120 mm on steep slopes, it may not be possible to establish a

similar relationship with Tb.

Classifying (generalizing) steep slopes in the field is a complicated task. The

terrain classification delineates slopes into general classes from 10 m digital topographic

data. However, in the field, slopes are much more complex. Slope angles, aspect,

curvature and land cover can all vary, and no two slopes are truly similar. Moreover, it is

very difficult to assess and quantify the land surface characteristics of steep slopes in

the field as they are covered by deep snow drifts. The topographic classification of

slopes is an over simplification of a complex environment. Considerable variability in

SWE exists on slopes, and similar variability should be expected in Tb.

As mentioned in Section 6.2.1, a relationship between Tb and SWE may be hard

to establish for slopes as, unlike lakes or flat tundra it is difficult to find completely

homogenous footprints. The airborne data should help investigate the behavior of Tb in

these complex areas. To simplify the initial analysis, slope aspects were grouped

together, and slopes were broken down into either high or low slope classes. In-situ site

and Magna Probe SWE from low slopes were compared to Tb from the 2005 and 2008

high resolution airborne data (Figure 6.16).
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Figure 6.16. Comparison of high resolution airborne Tb
with SWE over slopes (< 7 degrees)

There are no strong relationships between ATb37"19 and SWE on slopes of < 7
degrees. However, there are significant relationships between 37 and 19 GHz Tb and

SWE. The problem is that in every data set, there is a high range in SWE for a given Tb

or ATb37"19. This variability is most evident in the 2005 data (Figure 6.16 a) and b)).

Moreover, there is also a high range of Tb values for a given SWE. This is most evident

in the 2008 site data (Figure 6.16 c and d). The Magna Probe data do not show a full

range of SWE depths because the probe is limited to 120 cm of snow depth. When all

low slope data were plotted (Figure 6.16 g and h), some general trends were noted. The

ellipses show a possible general trend in ATb37'19 and 19 and 37 GHz Tb. A threshold
around 120 mm of SWE may in fact yield a reversal in the general relationship in ATb37"
19, 37 GHz and perhaps even 19 GHz Tb. However, the scatter in the data produces low

correlation coefficients, and no significant relationships are present with ATb37"19. The
lack of a strong relationship limits the ability to estimate SWE from Tb for low slope

areas. This is most evident if SWE were to be estimated for a ATb37"19 of -30 K. The

range of SWE for footprints with -30 ATb37"19 is nearly 300 mm, from a low of 50 mm to a
high of close to 350 mm. Even if the reversal in ATb37"19 at 120 mm SWE were
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considered, the best estimate of SWE would still be ± 50 mm. On low slopes, it would be

difficult, if not impossible, to relate SWE to Tb in an airborne footprint because the

values of SWE are not an accurate reflection of footprint SWE, or there are other factors

which influence Tb on low slopes. For example, the geometry of slopes may have an

influence on Tb. The airborne data are collected at a fixed radiometer incidence angle of

53 degrees. Along a flight line, there is a variety of different slope angles and aspects.

Slopes facing the radiometer would be in effect foreshortened while slopes facing away

from the radiometer would be elongated. The precise influence of slope geometry on Tb

is not clear; however, it would have the greatest effect in high resolution footprints.

Steep slopes (> 7°) are even more problematic when comparing Tb and SWE.
They are the most spatially constrained and variable terrain feature. Leeward slopes can

have up to 4x the amount of snow as flat areas. Furthermore, as outlined in Section

6.2.1 , the geo-location of slopes with footprint SWE is very difficult. Footprints with any

overlap to steep slopes were used for comparison with Tb (Figure 6.17).
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Figure 6.17. Comparison of high resolution airborne
with SWE over slopes (> 7 degrees)

Similar to low slopes, there is a large range in Tb for a given SWE and also a

large range in SWE for a given Tb. There is also a larger range of 1 9 GHz Tb for a given

SWE than in any other terrain. This could be due to areas of deep snow; however, the
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range ¡? 19 GHz is towards warmer Tb which may suggest that bare ground from

plateaus is a component of the footprints. Given the variability in Tb and SWE, it is clear

that it is nearly impossible to estimate SWE on steep slopes with high resolution airborne

data. However, steep slopes comprise a very small percentage of the landscape at the

satellite scale (Section 3.3.2). Hence, it is hypothesized that they contribute little to

satellite scale Tb.

6.2.5. Summary of High Resolution Tb vs. SWE

The previous sections showed that there are relationships between SWE and Tb on

flat tundra and at some lake sites. However, a strong relationship is certainly not evident

when all high resolution radiometer data are combined. On slopes, the lack of a

relationship is at least partially a result of the challenges in geolocating in-situ snow

measurements with small footprint airborne Tb. High resolution data are certainly

important in resolving satellite scale uncertainty; however, two challenges persist:

1- Providing an accurate estimate of within footprint SWE;

2- Finding homogenous terrain and land cover footprints in which to isolate the

effect of SWE on Tb given all other possible influences on microwave emission.

The first challenge is a product of the natural variability in tundra SWE. The single

SWE value used for comparison with Tb is an average of all measurements taken within

each footprint. However, at most, there are 30 points measured in a footprint. The

variability among these 30 measurements can be considerable, and little has been done

to define the spatial variability beyond the measurement locations. Hence, the lack of

relationship with Tb could easily stem from an improper quantification of within-footprint

SWE. The nature of SWE in high resolution footprints is further discussed in Appendix A.

The second challenge is somewhat unexpected in that tundra terrain and land

cover are generally thought to be somewhat less complex than other environments. High

resolution airborne data are not sufficient to explain why different terrain and land cover
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would produce a range of Tb, independent of SWE. Furthermore, lakes should offer the
most homogenous footprint in terms of surface roughness and snow cover. However,

different lakes have very different Tb characteristics due to the heat from underlying

water. This suggests that over lakes, like flat tundra, there are factors other than SWE
which influence Tb.

The resolution to this challenge is better defining how the combination of land

surface and snow cover influences microwave emission. The Tb recorded from a

footprint is the integration of all features within that area. Essentially what needs to be

addressed is the proportional contribution of both snow and land features to Tb. Ground

based data offer the only real opportunity to study end members of Tb and SWE for

different terrain and land cover. Attempting to isolate homogenous terrain and land cover

is helpful; however, at operational scales, there will always be a mixture of terrain, land

and snow cover properties. As such, the comparison of multiple resolutions of Tb data

will be addressed in Section 6.3 in order to work towards resolving satellite scale

uncertainty.

6.3. Application of Mid and Low Resolution Airborne Tb

6.3.1. Introduction

High resolution radiometer data are useful for examining the relationship

between SWE and Tb in a given terrain category. However, as Section 6.2 showed, the

variability in SWE limits the ability to interpret a relationship with Tb. Hence, at even high

resolutions, airborne data have terrain, land cover and SWE mixing issues similar to

satellite data. Ground based sensors do not have the same problems with spatial mixing

of terrain and land cover; however, Tb are not directly related to SWE without knowing

the contribution from snow density, grain size, stratigraphy, and underlying ground

surface.
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High resolution data are hampered by small scale variability in snow, terrain and

land cover. Resolving issues at these scales may not contribute to resolving uncertainly

in satellite data. However, coarse resolution airborne data integrate much of the high

frequency variability seen in high resolution data. The mid and low resolution data can

be used to address whether or not there are systematic trends in Tb which are not

related to SWE. Chapter 5 showed that at the satellite scale, land cover can have an

inter-seasonal influence on Tb where lake fraction does not. Moreover, in the satellite

data, there was little difference in Tb across multiple EASE grid pixels during a single

season. Working from high to low resolution, airborne Tb data may help explain what

contributes to satellite scale Tb and help identify any issues in relating Tb to SWE.

6.3.2. High to Low Resolution Tb

At the satellite scale, passive microwave sensors integrate every type of terrain,

land cover and snow surface into a single Tb. Hence, the challenge is to understand how

these sub-grid features collectively influence satellite scale Tb. The high resolution

ground based and airborne data were useful for investigating fundamental relationships

between SWE and Tb. However, at these resolutions, the relationships are hard to

define due to the considerable variability in land cover and SWE within footprints.

However, moving from high to low resolution of data should provide some insight into

what features have most influence on Tb. The 2005 airborne data were used to examine

the relationship in Tb as three altitudes were flown, giving three resolutions of data along

identical flight transects.

The increase in aircraft altitude provides coarser footprints with a very similar

along track sampling frequency. However, since the aircraft flew over the same line for

each successive flight, the footprint centroids for the different resolutions are offset and

do not overlap (Figure 6.18).
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Figure 6.18. Relative location of airborne footprints along flight line

As a result, some difference ¡n Tb can be anticipated due to this shift in footprint

location. However, more pronounced differences in Tb can be expected as the resolution
increases because many more features are integrated into each footprint. The

radiometer integration time was not changed from flight to flight; however, as flight
altitude increased so did the ground speed of the aircraft. As such, the lowest altitude,

highest resolution data have more along-track observations than the two successively
higher flights. This makes it difficult to precisely co-locate features in terms of Tb;
however, general changes in Tb along the line should be apparent in all resolutions.
Several flight lines were flown throughout the study area EASE grid. A representative
transect, across various terrain and land cover, was chosen for a multi-resolution

comparison of Tb (Figure 6.19).
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Figure 6.19. Airborne transect across study area EASE grid
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The Tb data were plotted for each flying height along with ground topography, lake cover

and temporally co-incident daily AMSR-E satellite Tb (Figure 6.20).
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Figure 6.20. Tb data for the three resolutions, high (A), mid (B) and low (C),
along with AMSR-E Tb
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At the highest resolution (A), there is much more variability in Tb at all

frequencies. The variability is evident at 37 GHz which shows its sensitivity to the
different land cover, terrain and snowpack properties. The variability in 37 GHz is much

larger over land than lakes due to the wide range of possible land, snow cover, and

topography combinations. Over lakes, the snow and ice properties which contribute to
Tb at 37 GHz are more consistent. The Tb over lakes is higher most likely due to the

consistently smaller basal snow grain size. The 19 GHz (A) shows comparatively little

variability in Tb. Values predominantly range from 240 to 245 K, with a sharp spike noted

in both 19 and 37 GHz at 14 500 m. The land cover in this area is classified as heath

tundra, and it is between a small pond and another lake. Unfortunately, no ground snow

cover observations were taken at this location, and this spike reinforces the difficulty in

relating variability in Tb to SWE at this resolution without ancillary data. The 6.9 GHz in

(A) has relatively low variability across land; however, the Tb drops sharply over lakes

(as noted in Figure 6.15). The Tb at 6.9 GHz drops to below 200 K over large deep

lakes, however, it does not seem to be sensitive to some of the smaller lakes which are

classified as shallow and likely frozen to bed.

In the mid-resolution data (B), there is lower amplitude in the variability of Tb. At

this resolution, the footprint size is over seven times larger than in (A). As such, there

are many more features integrated into a single footprint. This integration has the effect

of smoothing the transition in Tb between different features. Moreover, due to the

footprint offset (Figure 6.18), there are features, such as lakes, which appear in the mid

and low resolution footprints but do not appear in (A). As in (A), the 6.9 GHz Tb shows

almost no variability across land. There is a sharp decrease in 6.9 GHz Tb over deep

lakes which is coincident with the decreases in the high resolution transect (A). At 19

GHz, there is also less variability in Tb than in (A). Some similar patterns are evident;

however, much of the small amplitude variability in (A) is not present in (B). The Tb at 37
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GHz shows the most variability, particularly over land; however, the range is not as high

as in (A). Over lakes, the 37 GHz Tb is higher and more consistent, similar to (A). Lake

Tb values in (B) are very similar to (A).

At the lowest resolution (C), the amplitude of variability in Tb is a great deal lower

than in (A) and (B). At 19 GHz, the Tb is very consistent with a small range. Similar to

(A) and (B), the 19 GHz Tb are lower than the AMSR-E Tb. This could be due to

instrument differences or calibration uncertainty which makes it difficult to compare

absolute Tb from airborne to satellite platforms. The 6.9 GHz Tb show very little change

over land, similar to (B), however, they still drop over lakes. The transition from lake to

land is much more gradual in (C) due to the footprint size being over six times larger

than in (B). In (C), due to the larger footprint size, there is more integration of terrain, and

only larger lakes impact 6.9 GHz Tb. Interestingly the AMSR-E Tb corresponds quite
well to the 6.9 GHz over land. At 37 GHz, there is much less variability in Tb than in (A)

or (B). Over land, the amplitude of variability is far smaller than in (B), and only gradual

differences are observed. The large footprints integrate almost all of the high frequency

variation in (A) and (B). At the scale of (C), it appears as though the main differences in

Tb are between lakes and land. The one exception is a rise in 37 GHz Tb at around 12

500 m. This rise is evident in (B) but not in (A) due to the footprint offset and the effect of

larger footprints. At 12 500 m, the footprints of (B) and (C) are located over a lake, while

in (A) the footprints are located over adjacent land. At the coarsest resolution, the

biggest differences in Tb at 37 GHz are between lakes and land. The AMSR-E 37 GHz
Tb coincides with the airborne data over land areas but, not over lakes. As mentioned,

however, the absolute Tb between platforms is not expected to be exactly the same.
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The ATb37'19 was plotted for the three resolutions of data (Figure 6.21).
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Figure 6.21. ATb37"19 data for the three resolutions, high (D), mid (E) and low (F),
along with AMSR-E ATb3719
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Similar patterns in variability are expected in Figure 6.21 as ATb37"19 is driven

primarily by change in 37 GHz Tb. Moreover, it is clear that the footprint size has a large

influence on the spatial variability of ATb37"19. Plotting ATb37"19 in addition to Tb data is
useful as it is the technique often used for estimating SWE with satellite scale data. If a

model were developed to estimate SWE using the ATb37"19 in (D), it would have to
account for a large amount of variability. The lower resolution of data in (E) and to (F)

would make this task much easier. For example, for footprints in (F) with no lake

component, there is little change in ATb37"19. Over lakes, however, the ATb37"19 shifts to a
higher value and remains consistent, especially over deep lakes. The transition from

land to lakes is much more gradual as the footprint size increases. This occurs because

the increased size of the footprint has a wider reach, and footprints not centered over

lakes can still have a large lake fraction. Along the flight line, as the footprints approach

lakes, the lake fraction gradually increases and ATb37"19 gradually increases.
In Section 6.2, it was difficult to establish a clear relationship between ATb37"19

and SWE over all terrain types. One of the main problems was the difficulty in co-

locating ATb37"19 over homogenous terrain with a representative estimate of footprint

SWE. As the footprint size increases there is more generalization and much less noise in

the Tb. At the coarsest resolution, the main difference in Tb is over lakes and land.

Moving to a coarser resolution, (F) is a must because it is a more realistic approximation

of satellite scale Tb.

The ATb37"19 was summarized for low resolution (F) homogenous footprints over

both lakes and land (Table 6.4). Land footprints were classified as having up to 5%

percent lake fraction while lakes footprints were restricted to those with 1 00% lake

fraction.
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Table 6.4. Descriptive statistics for ATb from (F) over land and lakes

LAKE N
MEAN

200
-28

MIN
MAX

-38
-16

STDEV
CV

5
0.18

LAND N
MEAN

177
-33

MIN
MAX

-40
-18

STDEV
CV

4
0.12

3/-1tf*note: mean ATb' significantly different (p < 0.05)

The mean ATb37"19 over lakes is higher than over land by 5 K. The difference

between the two groups does not seem large; however, it is significant (p < 0.01). The

significant difference is in part due to the low variability about the mean in both groups

(low CV). These data indicate that at the coarsest resolution, ATb37"19 over lakes is
different than over land, yet the variability within the two groups is relatively small.

Based on the different snow and land surface properties, the ATb37"19 should be

different between land and lakes. Moreover, as the footprint resolution increases, it is not

surprising that the variability within these groups diminishes. The end points of 0 and

100 % lake fraction show a significant difference in ATb37"19; however, most footprints,
and EASE grids have lake fraction between 0 and 100%. Resolving the influence of lake

faction on ATb37"19 requires an examination of the proportional influence of lake fraction

on Tb from land to lake and back again.

6.3.3. Influence of Lake Fraction on Tb

In Chapter 5, no relationship was found between lake fraction and Tb at the

EASE grid scale. However, in Section 6.3.2, the Tb at 37 GHz and the ATb37"19 over
lakes was shown to be higher than over land in all three resolutions of airborne data.

The Tb data for the three resolutions from all airborne transects in the 2005 dataset were

plotted against lake fraction from 1 to 99 % (Figure 6.22, 6.23, 6.24).
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Figure 6.22. 6.9 GHz Tb vs. lake fraction

The relationship between 6.9 GHz Tb and lakes is apparent in Figure 6.22.

Despite the large amount of noise in the data, the general pattern is towards a decrease

in Tb for increasing lake fraction. However, the correlation between Tb and lake fraction

is stronger in the low resolution data. It ranges from r = -0.17 in (A), r = -0.43 in (B), and r

= -0.55 in (C). The points highlighted with an ellipse in (A) shows a range of lakes with

high Tb, meaning they are likely frozen to bottom. Moreover, in the high resolution data,

there is a greater chance of footprints being completely within smaller lakes which

typically freeze to bottom. The variability near 0 percent decreases considerably in the
mid and low resolution data. This suggests that at these resolutions, smaller land

features which produce low Tb in (A) are not as visible. Moreover, most footprints in (C)

near 99% lake fraction have lower Tb. This is because the lakes completely within low

resolution footprints are large and typically do not freeze to bottom. The footprints

highlighted in (C) have higher Tb with high lake fraction. These footprints are most likely

over a larger lake which does not freeze to bottom. At all three resolutions, the difference
in mean 6.9 GHz Tb from 0 to 100 % lake fraction is 43 K. Although 6.9 GHz Tb is not

considered in current SWE algorithms, these relationships are useful for demonstrating

the strong relationships between long wavelength emission at 6.9 GHz and tundra lake

214



fraction. Moreover, lake fraction and the general properties of lakes within footprints can

be assessed from the relationship with 6.9 GHz Tb.
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Figure 6.23. 19 GHz Tb vs lake fraction

The relationships between 19 GHz Tb and lake fraction are not as strong as at

6.9 GHz. The correlation coefficients are weak at 0.1 1 in (A), 0.19 in (B), and 0.34 in (C).

The variability in Tb at both 1 and 99% is largest in the high resolution data. As the

resolution gets lower, 19 GHz shows less variability. The rate of change (slope) in Tb in

relation to lake fraction is quite small. The cloud of points indicates an increase in Tb

towards increasing lake fraction. The change in mean Tb from near 0 to 100% lake

fraction is 3 K in the high resolution, 5 K in the mid resolution and 5 K in the low

resolution data. These shifts in Tb are not as large as in the 6.9 GHz Tb because the

latter is influenced by the water under the ice. At 19 GHz, due to the shorter penetration

depths, the water does not have the same effect.
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Figure 6.24. 37 GHz Tb vs lake fraction

The relationships between 37 GHz Tb and lake fraction are much more evident

than at 19 GHz. The most variability is present in the high resolution data (A) due to the

sensitivity to smaller scale terrain, land and snow cover change. Similar to Section 6.3.2,

the Tb at 37 GHz increases with increasing lake fraction. In addition to the plots, the

descriptive statistics for 0 and 100% lake fraction at each resolution were generated

(Table 6.5).

Table 6.5. Descriptive statistics for 37 GHz Tb at 0 and 100 % lake fraction
High Resolution Tb (K) Mid Resolution Tb (K) Low Resolution Tb (K)

Lake
Fraction

Mean I SD CV Diff Mean SD CV Diff Mean SD CV Diff

0% 212 0.04
100 % 226 0.03

14
211 0.03
226 0.02

15 210 0.02
224 0.01

15

The variability in Tb is very similar at 0 and 100 % lake fraction. However, the

mean Tb from 0 to 100 % lake fraction is quite different. In the high resolution data, it

increased by 14 K, and increased by 15 K in the mid and low resolution data. This shift is

not as great as at 6.9 GHz but is 10 K greater than the shift in 19 GHz Tb. The shift in Tb

at 6.9 GHz is due to sharp contrast in emission from water under ice. However, at 37

GHz, the Tb is not influenced by water under the ice and only slightly influenced by ice

temperature. The Tb is higher on lakes primarily because of the difference in snowpack

properties from those on land.
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To determine the sensitivity of lakes to potential SWE algorithm development, the

relationship between ATb37"19 and lake fraction was plotted (Figure 6.25).
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Figure 6.25. ATb37'19 vs lake fraction

Due to the insensitivity of 19 GHz to lake fraction, the patterns in ATb37"19 are
nearly identical to those for 37 GHz Tb. Table 6.5 showed that for a single flight line the

mean ATb37"19 over lakes was higher than over land by 5 K. In Figure 6.25, which

considers all flight line data, the difference in ATb37"19 from 1 to 99% lake fraction
appears to be greater than 5K. In addition to the plots, the descriptive statistics of ATb37"
19 for 0 and 100% lake fraction at each resolution were generated (Table 6.6).

Table 6.6. Descriptive statistics for ATb37"19 at 0 and 100 % lake fraction
High Resolution ATb 37-19 Mid Resolution ATb3719 Low Resolution ATb3719

Lake
Fraction

Mean SD CV Diff Mean SD CV Diff Mean SD CV Diff

0% -31 0.26

100% -21 0.28
10 -31 0.19

-20 0.25
11

-33 0.12
-23 0.13

10

Similar to the 37 GHz Tb, the variability in ATb37"19 decreases as resolution gets

lower. However, the mean ATb37"19 at each resolution is very similar at 0 and 100 % lake

fraction. This suggests that the integration of more features with coarser resolution does

not change the mean ATb37"19 for land or lakes. The difference in mean ATb37"19 between
0 and 100 % lake fraction is 10 K for the high resolution, 11 K for the mid and 10 K for

the low resolution data.
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A difference of 10 K in ATb37"19 from lakes to land could have a large impact on

the ability to estimate SWE, especially considering that in some snow survey years

(Section 4.4), the depth of SWE on land was not significantly different from that on lakes.

Three separate SWE retrieval equations were used to demonstrate the sensitivity in

SWE for a difference of 10 K in ATb37"19. The EC open ground algorithm, described in

Section 2.3.3.1, was used along with the strongest relationships between SWE and

ATb37"19 over flat tundra shown in Table 6.2. Although none of these linear algorithms are

properly parameterized for absolute SWE in the tundra, they provide a good example of

possible uncertainty associated with the shift in 37 GHz Tb and ATb37"19 due to lake
fraction. The sensitivity in SWE (mm) was generated for each equation (Table 6.7).

Table 6.7. The sensitivity in SWE for 10 K ATb37"19
Estimate of SWE Equation Sensitivity in SWE for

10KATb37"19
Table 6.2 <120mmSWE SWE = 53 -1.19(ATb37"19) 12 mm

Table 6.2 >120mm SWE SWE = 203 + 1.16(ATb37-19) 12 mm

EC Open Ground
(Section 2.3.3.1)

SWE (mm) = -20.7 - 49.27[(ATb37'19)/18] 27 mm

A shift of 10 K in ATb37"19 would result in a change of 12 mm using the two

equations from Table 6.2. However, using the EC algorithm, 10 K produces a difference
of 27 mm. This shows that if lake fraction was not considered, in the most extreme case

there would be an error of 27 mm in SWE.

At the satellite scale, Chapter 5 demonstrated that there was no clear

relationship between lake fraction and ATb37"19. The correlation between AMSR-E 37
GHz Tb and lake fraction for the 30 year satellite time series ranges from a high of r =

0.27 to a low of r = 0.00 with a mean of r = 0.14. However, the relationship between

ATb37"19 may not be as apparent at the satellite scale due to the range of lake fraction

found in the EASE grid cells examined. The range of lake fraction for the 40 EASE grid

cells was plotted on a frequency histogram (Figure 6.26).
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Figure 6.26. The frequency of lake fraction for the 40 EASE grid cells
described in Chapter 5

The range of lake fraction for the EASE grid cells is much more constrained than

in the airborne data. There were no grid cells with less than 10 % lake fraction and none

with more than 50 % lake fraction. This could explain why the relationships seen using

airborne data are not as apparent in the EASE grid data. For the range of lake fraction at

the EASE grid scale (10 - 45%), there it little change in ATb37"19. Most of the slope
(change in ATb37"19) is evident below 20 % and above 80 % lake fraction. Hence, a

relationship between ATb37'19 and lake fraction may not be apparent at the satellite scale

because no EASE grid cells with < 20 or > 80 % lake fraction were examined.

A linear relationship could be used to correct for the influence of lake fraction on

ATb37"19. However, this assumes that there is no significant difference in SWE on lakes

and land. The linear relationships would be simpler as the equation could be applied to a

given ATb37"19 based on the lake fraction. However, unless EASE grid cells, which have

< 20 or > 80 % lake fraction, are considered, the correction does not appear to be

necessary. It is important to note that the difference in ATb37"19 is not due to the
presence of lakes themselves. It is because the snow pack properties on lakes are

different than on land, mainly due to smaller basal grain size, and because ice has very

219



different emission characteristics than the land surface. Nonetheless, lake fraction does

have a systematic influence on Tb at 6.9, 37 GHz and on the ATb37"19.
6.4. Summary of the Contribution of Airborne Data

Section 6.2 showed that for some terrain and land cover combinations there is a

significant relationship between SWE and ATb37"19. However, airborne data, especially at
a high resolution, present many challenges in isolating a relationship between Tb and

SWE. A further complication was the definition of within-footprint SWE. The three

resolutions of airborne data show that as footprint size increased the amplitude of

variability in Tb decrease considerably. Explaining the variability in Tb in the high or mid

resolution data would be very difficult and require a multi-factor mixing model. It is

unlikely the snow, terrain, and land cover data could be collected to build such a model.
Moreover, such an effort would be next to useless as airborne data are not available to

provide operational estimates of SWE. Luckily, much of the variability in Tb at high and

mid resolutions was not present in the low resolution data.

It can be assumed that most of the variability seen in the high and mid resolution

airborne data is not going to be evident at the EASE grid scale. In the low resolution

data, the variability of Tb is not sufficient to explain the natural variability in SWE at any

one location. Hence, Tb data are reflective of only general differences. In the low

resolution data, the only differences were in 37 GHz Tb and between land and lakes.

However, in some years, the SWE on lakes was not significantly different from on land. If

the SWE were not significantly different, a correction could be applied to compensate for

the influence of lake fraction on Tb. However, the effect of lake fraction on Tb is most

pronounced below 20 % and above 80 % lake fraction.

Given the generalization of Tb in the low resolution airborne data, it is not likely

that slopes or other spatially constrained terrain features have a major influence on

EASE grid ATb37"19. Moreover, at a given moment in time, with the possible exception of
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lakes and land, there is little difference in ATb37"19 across the tundra. Thus, it is

essentially impossible to generate a satellite scale algorithm from airborne data.

Moreover, satellite scale ATb37"19 should not be expected to show much regional

variability. However, differences in ATb37"19 between seasons should be indicative of
relative changes in snow cover properties.
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CHAPTER 7: IMPROVING PASSIVE MICROWAVE ESTIMATES OF SWE

7.1. Introduction

Satellite passive microwave data have been used in the prairies and boreal

forests to provide operational estimates of SWE. Operational algorithms rely on a linear

relationship between ATb37"19 and SWE. As SWE increases, there is greater scattering

and absorption of emission at 37 GHz which results in a lower Tb. The complexity of

tundra snow cover and landscape properties has limited the production of reliable

estimates of SWE. Linking Tb change to SWE in the tundra is challenged by

considerable heterogeneity in terrain, snowpack properties, land cover and surface

water bodies. Multi-scale airborne passive microwave data show the extent to which Tb

can vary at a sub-EASE grid satellite scale. However, using high resolution airborne data

over flat tundra, a good relationship exists between SWE and ATb37"19. In general, as
SWE increases, the ATb37"19 decreases. This occurs up to a threshold of ~ 120 mm

where the slope of the relationship reverses.

In other terrain categories, there are no strong relationships between ATb37"19
and SWE. Over slopes and lakes, it is difficult to isolate the effect of SWE on Tb

because of the influence of other snow, land cover, and lake ice properties on

microwave emission. However, with decreasing resolution (larger footprint size), there is

a greater mixing of terrain and snow cover properties. As a result, the variability in Tb

diminishes; however, defining within footprint SWE becomes more difficult.

Unfortunately, producing an algorithm to estimate SWE from airborne Tb data is not

possible because, for flight data obtained in a short time period, there is little relative
difference in snow pack properties and Tb. Ground based data may be able to provide

the end-members necessary to understand how different snow cover properties

influence Tb. However, the extremely small ground based footprints help understand the

effect of mixing different terrain and land cover on Tb. Moreover, airborne and ground
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based data are both spatially and temporally constrained. As such, satellite data are the

only option for operational algorithm development as they are collected at regular

intervals over large spatial extents.

7.2. The Quadratic Approach

A relationship between observed differences in tundra SWE and Tb is evident in

satellite data presented in Chapter 5. However, the nature of the relationship does not

follow expected trends. Normally, a greater ATb37"19 relates to higher SWE, while a
smaller ATb37"19 relates to lower SWE. For the quadratic function presented in Chapter 5,

the relationship between ATb37"19 and SWE was positive for SWE > -150 mm and in the

opposite direction for SWE < -150 mm. The quadratic function explains a large amount

of the variance in in-situ SWE with ATb37"19. This suggests that on an empirical basis, the

ATb37"19 is sensitive to relative changes in SWE among the different seasons. The

troubling part is that a greater ATb37"19 should indicate higher SWE, not lower SWE. To

investigate the difference in Tb from year to year, the 19 and 37 GHz Tb were plotted

along with SWE, snow depth and ATb37"19 (Figure 7.1).
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Figure 7.1. Plot 19, 37, ATb3719 and SWE
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The difference in snow cover among years is most evident in the SWE. The snow

depth does not vary as much as SWE. However, the years with higher snow depth also

have higher SWE. This occurs because when the snow depth is greater, dense wind

slab layers are thicker, and represent a higher proportion of the snow pack. In low snow

years, the wind slab is thinner, and more of total depth is low density depth hoar.

In Figure 7.1, when SWE is greater, the ATb37"19 is higher which, indicates less
difference between 37 and 19 GHz Tb. The difference between the two frequencies is

lower because the 37 GHz Tb is higher with greater SWE. As mentioned, in conventional

algorithms the 37 GHz Tb should decrease with increasing SWE (below 120 mm SWE).

In the years plotted, the lowest SWE (2003) also has the lowest 37 GHz Tb.

To explain the relationships in Figure 7.1, differences in snow stratigraphy must

also be considered. Basal depth hoar has a large influence on 37 GHz Tb because the

grain size often approaches the wavelength of emission. Depth hoar has the effect of

lowering 37 GHz Tb disproportionately relative to the depth of SWE. For example, in the

ground based data shown in Figure 6.7, the biggest shift in 37 GHz Tb occurred in the

lower 20 cm of the snow pack, which was predominantly basal depth hoar. Above 20 cm

depth, there was much less of a change in 37 GHz Tb. This is because at a certain

point, the fine grained wind slab begins to self-emit which balances loss and can even
raise the Tb.

If grain size has a stronger influence on Tb than SWE, then the years with larger

snow grain sizes should also have lower Tb at 37 GHz. However, field observations

show that the basal grain size and wind slab grain sizes do not vary much from year to

year. Moreover, the thickness of the depth hoar depends on land surface properties and

for a given location is relatively similar from year to year. However, the thickness and

density of the wind slab layer over the depth hoar does change.
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The years with higher snow depth also have a thicker wind slab. The thick slab
masks the influence of underlying depth hoar on Tb by self-emission or by raising the

depth of emission above the basal depth hoar layer. As a result, for years with thicker

wind slab layers, the Tb at 37 GHz is higher. In low snow years, the depth hoar is

absorbing more of the emission, and there is little wind slab to either raise the depth of

emission or self emit. If these scenarios are plausible, then the inverse relationship

between 37 GHz and SWE can be accounted for, and it can be inferred that satellite Tb

is more sensitive to grain size and stratigraphy than SWE. However, the quadratic

function fits observed SWE well. This can be explained because the differences in SWE

are directly related to differences in snow stratigraphy. The quadratic function which

defines the relationship between in-situ SWE and ATb37'19 is as follows:

5WE = - 2.02 ± ^4.08 - (-0.028(-1 69.08 - Tb31_ig )
-0.014

Because the function describes a quadratic curve, there are two possible SWE for each

ATb37"19 (Figure 7.2).

High SWE Equation

- 2.02 - %i4.0* - i-O'Mm- 1 6MiS -?(>,,.~??,VW-:
-0.0N

Low SW E Equation

sm: - 2.02 - ^4.08 - (-0.02ÍH-! 69.08 - ?»5,. ,,- )

37-19GHz
»37-19Figure 7.2. Quadratic function to estimate SWE from ATb

If the quadratic function is to be applied to years without field observation, then a

method must be derived to decide which of the two SWE equations is appropriate.

Because of its sensitivity to grain size and stratigraphy, the 37 GHz Tb can be used to
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determine if years fit better to the high or low SWE equation. If the 37 GHz Tb is low, it is

likely because the wind slab is thin and the depth hoar is the predominant influence. In

higher snow years, the influence of the depth hoar is diminished by the thicker wind slab,

and higher 37 GHz Tb is produced. An initial threshold of 220 K was selected based on
the available data. If the 37 GHz Tb is < 220 K, then the low SWE equation is used, and

if the Tb is > 220 K, the high SWE equation is used. Using this simple logic, the fit of in-

situ SWE and ATb37"19 can be replicated (Figure 7.3).
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Figure 7.3. Selecting the high or low SWE equation from 37 GHz Tb

Equation selected
from 37 6Hz Tb

Figure 7.3 shows how the 37 GHz Tb can be used to select the appropriate
equation for the best fit with observed SWE. This relationship is an important step
towards understanding how Tb may be linked to changes in snow cover. However,
without additional field data, there is little to suggest whether the relationship applies to
past data or will be applicable in the future. Despite the inherent uncertainty, the satellite
time series data were plotted using the quadratic function and high/low SWE indicator
(Figure 7.4).
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Figure 7.4. Estimates of SWE for the Daring Lake EASE grid

from the 30 year satellite time series of ATb37'19
The quadratic function is an interesting empirical relationship derived from seven

years of field data. However, beyond the years with in-situ data, it is not possible to

determine the accuracy of the SWE estimates. Over the satellite time series (Figure 7.4),

there are more SWE using the low SWE equation than the high SWE equation.

However, in the SMMR data (1978 to 1988). the high SWE equation is used more often.

This sensor specific pattern is unlikely a natural trend in SWE. It is likely that the 37 GHz

threshold for the selecting the proper equation is not appropriate, especially for the

SMMR data. Since the inception of the SSM/I sensor (1988), there have been only

seven years that use high SWE equation. Three of the years (03/04, 05/06, and 06/07)

have in-situ data to suggest that the higher SWE equation is appropriate. In the years

using the low SWE equation, there is little difference in estimated SWE. Most years

range from 100 to 120 mm SWE. One interesting pattern is that there are few estimates
between 120 and 160 mm SWE. While these step changes are not likely a natural trend,

the function provides some perspective on the relative changes in ATb37"19 and how that
may relate to tundra SWE.
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The quadratic function to estimate SWE from ATb37"19 performs well using the
data in-situ collected for the study area. However, there is little to determine how well it

would perform in other study areas or how well it is estimating past conditions. The

quadratic shows that in the tundra the traditional relationships between ATb37"19 and
SWE may not necessarily apply. Moreover, it also shows that there are snowpack

properties other than SWE which may be influencing satellite Tb.

7.3. Towards an operational algorithm

An operational algorithm for estimating tundra SWE has not yet been developed

as the relationships with Tb are different than for other landscapes. Moreover, algorithms

developed in other environments often perform poorly when compared to observed

tundra SWE. For example, the EC open ground algorithm developed for the prairies

(Goodison and Walker, 1995) consistently underestimates tundra SWE (Figure 7.5).

O EC Prairie Algorithm
• Observed SWE

2002/03 03/04 04/05 05/06 06/07 07/08 08/09

Figure 7.5. EC prairie algorithm estimates of tundra SWE

The prairie EC algorithm is based on a linear relationship between ATb37"19 and
SWE and was not parameterized for tundra snow packs. Furthermore, it is not intended
for use when SWE exceeds 120 mm because it does not compensate for the reversal in

37 GHz Tb. Nonetheless, it is sensitive to the relative changes in SWE from year to year.

However, the change in ATb37"19 is inverse to observed SWE.
More recent algorithms perform somewhat better in the tundra. Derksen et al. (in

press) developed a new approach using only 37 GHz Tb to estimate SWE. Airborne and

satellite measurements were coupled with intensive tundra snow surveys to develop the
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tundra-specific SWE algorithm. By using a single frequency, the influence of sub-grid
lake fraction and the slope reversal in 37 GHz Tb with self-emission can be taken into

account. Any change in Tb from January through April is thought to be largely due to an

increase in SWE deposition. During low snow years, the Tb will decrease, and the

threshold for the reversal in 37 GHz Tb may not be reached. However, in high snow

years, the 37 GHz will begin to increase when the threshold of reversal is reached. By

looking at the cumulative change in Tb, SWE can continue to be estimated through self-

emission. A greater cumulative change in 37 GHz Tb from January through April should

indicate higher end-of-season SWE.

This approach should yield reasonable results as the 37 GHz Tb does decrease

from the start of the season to the end of the season in each year studied (Figure 7.6).
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Figure 7.6. The seasonal evolution of 19GHz, 37 GHz from
November 1 to April 30 (From Figure 5.2)

However, from Figure 7.6, it appears as though the years with higher SWE

(03/04, 05/06) do not have the lowest 37 GHz Tb. Moreover, the years with lowest SWE

(02/03, 04/05) seem to have more cumulative change in 37 GHz Tb. Hence, one of the

biggest challenges in determining end-of-season SWE is taking into account the nature

of the change in Tb throughout the season.

Results using a single frequency approach are encouraging for addressing some

of the key challenges in estimating tundra SWE. However, given the relative stability of
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19 GHz Tb, and the decrease in 37 GHz Tb during each of the years, using a ATb

approach should not be completely discounted (Figure 7.7).
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Figure 7.7. The seasonal evolution of the ATb37"19 from November 1
to April 30 for 2002/03 to 2007/08 (From Figure 5.3)

Whether using a single frequency or a ATb37"19 approach, future algorithm
development would benefit from the integration of field observations. A similar approach

to Pulliainen (2006), which weights passive microwave data driving a semi-empirical

radiative transfer model and prior snow information from ground measurements with

their respective statistical uncertainties, could be adopted. In fact, the approach

developed by Pulliainen (2006) compares favourably to the 2006, 2007, and 2008

survey data (Solberg et al., 2009). However, an obvious limitation is the proximity of

meteorological stations for the assimilation with Tb data.

7.4. Summary

7.4.1 . Summary of Contributions

The overall objective of this research is to improve operational capabilities for

estimating end of winter, pre-melt tundra SWE using satellite passive microwave data.

The first step in improving estimates was to develop a better understanding of the

distribution and properties of tundra snow within an EASE grid study area (Chapter 4).
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In-situ snow data were then compared to satellite passive microwave data (Chapter 5).

Multiple scales of ground based and airborne passive microwave data were then used to

help resolve uncertainty in the relationship between satellite Tb and SWE (Chapter 6).

7.4.1.1. Summary of Tundra Snow Cover

The spatial distribution of snow depth, density and SWE is controlled by the

interaction of blowing snow with terrain and land cover. The snow cover data collected

confirmed that spatially constrained measurements are not sufficient to understand the

distribution and properties of tundra snow. Despite the spatial heterogeneity of snow
cover, several inter-annual consistencies were identified.

- Tundra snow density is consistent when considered on a site-by-site basis,

among different terrain types, and from season to season.

A regional average density of 0.294 g/cm3 was derived from the six years of
measurements. When applied to site snow depths, there is little difference in SWE

derived from either the site or the regional average density.

The high variability in SWE demonstrates the need to use a terrain based
classification to better understand snow cover distribution.

- Despite potential differences in seasonal weather patterns, there are consistent

ratios in the depth of SWE on flat tundra to the depth of SWE on other terrain

categories.

As a result, despite differences in snowfall, the inter-annual patterns of terrain based

SWE do not change very much. On slopes, the volume of snow in depositional drifts

does change as does the aspect upon which the drifts form.

Variability in SWE was observed within and between different terrain types. The

variability was described by the coefficient of variation (CV). The variability in SWE was

least on lakes and flat tundra, greater on slopes and the highest on plateaus. Despite

differences in mean SWE from year to year, the variability (CV) in a given terrain
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category is quite similar. The overall weighted mean CV for the study area was shown to

be 0.40, which is a useful generalization for studies done using coarse resolution grids at

a regional scale.

For application to remote sensing and other grid based modelling, snow cover

data need to be generalized and extrapolated over larger areas. Moreover, coarse

resolution passive microwave remote sensing data attempt to provide single estimates of

SWE over 625 km2 EASE grid cells. These estimates are essentially useless unless they

can be related to sub-grid snow cover properties.

- A terrain and landscape based classification scheme is used to generalize and

extrapolate tundra SWE.

Using this type of classification, sub-grid snow cover properties can be scaled up from
point data or down from EASE grid data. Deriving a weighted mean SWE based on the

spatial proportion of landscape and terrain features was shown as the best method for

generalizing the distribution of tundra SWE.

7.4. 1.2. Summary of Satellite Tb Data

Satellite data were summarized for the seasons with in-situ snow cover

observations. Within each season and among each season, there was little difference in

19 GHz Tb. However, during each season, there was always a large decrease in 37

GHz Tb from early November through April. The magnitude of the decrease varied from

year to year. As a result of the drop in 37 GHz Tb relative to 1 9 GHz Tb, the ATb37"19
decreased from zero in early November to a maximum of -20 to -42 in March or April.

- The change in ATb37"19 throughout each season shows a sensitivity in 37 GHz Tb

to parameters that evolve over a winter season.

To look for inter-annually consistent spatial patterns of ATb37'19, a principal components
analysis (PCA) was applied to a domain of EASE grid cells surrounding the study area.

The PCA showed that there are differences in ATb37"19 among different EASE grids and
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that land cover may have an influence on regional Tb. The PCA was also used for the

comparison of the 30 year time series of Tb to EASE grid lake fraction.

- The spatial patterns in end of season ATb37"19 were not well correlated to lake
fraction in any of the 30 years in the time series.

There was a good relationship between ATb37"19 and in-situ SWE. Below 150 mm, the
data show a positive linear relationship. As the ATb37"19 increases so does the in-situ
SWE. Above 150 mm, the relationship is linear but in the opposite direction.

- A quadratic function was fitted to explain 89 percent of the variance in SWE from
ATb37"19.

The quadratic relationship provides a good fit between the data; however, the nature of

the relationship is opposite to the expected linear relationship between ATb37"19 and
SWE. Most linear relationships are based on the assumption that as the SWE increases

the ATb37"19 decreases (a greater difference between 19 and 37 GHz). The quadratic

shows that below 150 mm SWE, as the SWE increases, the difference between 19 and

37 GHz decreases. However, beyond 150 mm SWE, a larger ATb37"19 corresponds to
greater SWE.

7.4.1.3. Summary of Multi-scale Tb Data

High resolution Tb data are useful for examining how different snow, land cover

and terrain properties influence microwave emission. However, due to the complexity of
snow and terrain even in small footprints, it is a challenge to isolate any relationship

between SWE and Tb. High resolution Tb data were compared to SWE from both in-situ

sites and Magna Probe transects.

- In flat tundra, there was a significant relationship between SWE and ATb37"19.
- On lakes and slopes, no strong relationships were found between SWE and

ATb37"19.
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Three resolutions of airborne data were available, and the Tb from each were compared

along transects through different terrain, land cover and SWE.

- As the airborne footprint size increased, the amplitude of variability in Tb

decreased considerably.

As such, it can be assumed that most of the variability seen in the high and mid

resolution airborne data is not going to be evident at the EASE grid scale.

- Hence, slopes or other spatially constrained terrain features will not have a major

influence on EASE grid scale Tb.

However, as a result, the Tb in large footprints is not sensitive to the local scale

variability in SWE.

- In the low resolution airborne data, the only differences in Tb (37 GHz) were

between land and lakes.

However, in some years, the SWE on lakes was not significantly different from that on

land. Differences in Tb are caused by the difference in snow structure from lakes to

terrestrial surfaces.

- The effect of lake fraction on 37 GHz Tb is most pronounced below 20 % and

above 80 % lake fraction.

For years in which the SWE were not significantly different from lakes to land, a
correction could be applied to compensate for the influence of lake fraction on Tb.

With the exception of lakes and land there is little difference in ATb37"19 across
the tundra, in the low resolution airborne data. Thus, it is essentially impossible to

generate an operational satellite scale algorithm from airborne data. Moreover, satellite

scale ATb37"19 should not be expected to show much regional variability in a given year.

The differences in ATb37"19 among years is indicative of relative changes in snow cover

properties.
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7.4.2. Remaining Challenges

The theoretical challenges to developing an operational algorithm for estimating

tundra SWE were outlined in Section 2.4. Essentially the biggest challenge is accounting

for influence of sub-grid, snow, terrain and land cover properties on satellite emission

(Table 7.1).

Table 7.1. Factors in the tundra that affect passive microwave brightness temperature
Factor Influences on passive microwave

______________________________________emission
Terrain and Landscape - Topography (terrain)

- Surface Roughness
- Vegetation Cover
- Soil Condition- Lake Cover Fraction

Snow Cover - SWE
- Snow Depth
- Snow Density
- Grain SizeI - Stratigraphy (wind slabs/depth hoar)

The airborne, ground based and satellite data all show that Tb responds to

differences in snow cover properties. The remaining challenge is relating the change in

Tb to changes in SWE. In order to isolate SWE, the influence of all other factors on
satellite Tb must be understood.

7.4.2. 1. Terrain and Landscape

The most prominent effect of terrain is the influence of topography on the wind-

redistribution of snow. Snow accumulation patterns throughout the study area are driven

by wind redistribution. This results in uneven snow accumulation patterns with large

spatially constrained drifts forming on leeward slopes. Although deep drifts are important

components of the hydrologie cycle, they occupy a small spatial percentage of the

landscape. Moreover, while these slopes present a challenge to interpreting high

resolution airborne and ground based Tb, they are have little effect on low resolution
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airborne Tb. As such, it is assumed they have even less influence on Tb at the EASE

grid scale.

Land surface roughness and vegetation cover have an influence on the

accumulation of blowing snow. Deeper snow can be found in the lee of rocks, boulders

and shrub vegetation. The variability in the land surface is responsible for local scale

variability in snow cover, which limits the ability to link SWE with Tb in the high resolution
airborne footprint. Fortunately, much of the variability in high resolution Tb is not evident

in the mid and low resolution airborne data.

Soil condition is another factor which has the potential to influence Tb. However,

the influence of soil condition would be more prominent in the early part of the season.

By late winter, the depth of snow is sufficient that the contribution to 37 GHz Tb would be

minimal. Soil condition should have a greater influence on 19 GHz Tb. However, all

resolutions of airborne data show little difference in 19 GHz Tb through different terrain

and land cover.

Lake fraction is often cited as one of the most prominent challenges in

operational algorithm development. The influence of lake fraction, similar to soil

conditions, is not temporally static. In early winter, when snow and ice thickness are

lowest, there is a greater influence of underlying water on both 19 and 37 GHz Tb.

However, as snow and ice accumulate through the winter, the effect on Tb diminishes.

By the end of the season, snow depth and ice thickness are sufficient that, even at 19

GHz, there is little influence of lake fraction. The main influence of lakes on 37 GHz Tb is

the difference in snow pack properties from lakes to land. However, due to the mixing of

lakes and land, there is little evidence of a similar relationship at the satellite scale. As

such, the effect of lake fraction on end-of-season satellite scale SWE retrievals should

be minimal.
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7.4.2.2. Snow Cover

Variability in snow cover properties can complicate the understanding of

microwave emission and Tb. Snow depth, SWE, grain size and stratigraphy all have a

potential influence on Tb which can complicate the isolation of any one parameter.

However, most snow cover properties are interrelated, which provides the potential for

explaining Tb. For example, lower Tb at 37 GHz is often linked to the presence of large

grained basal depth hoar. In the tundra, the presence of depth hoar depends on land

surface roughness, vegetation cover and soil moisture. However, the thickness of basal

depth hoar is relatively consistent from year to year. What varies from year to year is the

thickness of the overlying wind slab. As the slab increases in thickness, the effect of the

depth hoar is diminished, and Tb at 37 GHz increases. While linked to grain size, the

increase in Tb occurs in conjunction with an increase in both snow depth and SWE.

The low resolution airborne data show that Tb does not vary a great deal across

different terrain and snow covered surfaces. Hence, the variability in local scale SWE is

not reflected in coarse resolution Tb. As a result, one of the biggest challenges is

defining SWE at the EASE grid scale. A terrain weighted mean SWE is presented;

however, a single mean value does not account for the variability at any given location.

Moreover, spatially constrained features with disproportionate SWE (deep drifts), can

skew a weighted mean, despite the fact that they have little influence on coarse

resolution Tb.

To resolve uncertainties, a sensitivity analysis approach could be applied.

Microwave emission models could be used to simulate Tb under different snow, land

and terrain cover conditions. With this approach, it can be determined which snow cover

parameters have the greatest influence on coarse resolution Tb.
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Algorithm development should be possible as satellite scale ATb37"19 changes
from year to year in response to changes in snow cover properties. However, the most

important contribution to understanding these changes is the in-situ observations of

snow cover. In order to develop a better understanding of the relationship between SWE

and Tb, collection of in-situ snow cover data should continue into the future.
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APPENDIX A: SWE IN HIGH RESOLUTION FOOTPRINTS

One of the main challenges in using passive microwave data to estimate SWE is

quantifying footprint SWE. Typically a single SWE value, which is an average of all
measurements taken within each footprint, is used for comparison with Tb. However, the

variability in SWE within a footprint is not considered. Poor relationships between SWE

and Tb could easily stem from an improper quantification of within-footprint SWE.

As outlined in Section 6.2.1 , the SWE used for comparison to high resolution Tb

were derived either from single sites with 30 random depth and 5 random density

measurements in the footprint or from at least 10 Magna Probe depth measurements

and 2-4 density measurements on transects through the footprints. Using a mean SWE

can be misleading in that there is no indication of within footprint variability. Using a

mean assumes that the SWE is relatively homogenous within each footprint and that

relative differences in SWE among footprints can be related to corresponding differences

in Tb. The variability of SWE within a footprint needs to be examined using the site SWE

and Magna Probe SWE data.

Site SWE

Chapter 4 showed that the variability in SWE among sites in different terrain

types can be considerable. The site data provide a mean SWE for comparison with Tb;

however, the applicability of the mean depends on how much variability is present in 30

depth and 5 density measurements. As such, the variability within a site should be

considered when comparing to footprint Tb. To examine variability in SWE to Tb, the

2005 and 2008 flat tundra sites were plotted from low to high SWE including ± 1 STDEV,

along with 19 and 37 GHz Tb (Figure A.1).
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Figure A.1. Plot of SWE ± 1 STDEV and Tb for flat tundra sites in 2005 and 2008

Figure A.1 shows that at all sites, there is substantial variability in SWE. The

highest variability is at sites with a mean SWE of 75 to 100 mm. Above 100 mm and

below 75 mm, the STDEV is lower relative to the mean. The 19 GHz remains fairly

constant as SWE increases; however, for very similar SWE, the difference in 19 GHz Tb

can be up to 20 K. The general pattern in 37 GHz Tb is a decrease with increasing SWE.

However, similar to the 19 GHz, there is a high range in Tb for similar SWE. The ATb37"19
yields less scatter than the individual Tb, and there is a decreasing trend with increasing
SWE. Similar to Section 6.2.1, a relationship is difficult to establish when there is a large

range in ATb37"19 for a small range in mean SWE. If there should be a relationship
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among ATb37"19 and SWE, then the mean SWE alone is not properly characterizing the
effect snow has on Tb.

Since the variability is high within each footprint, then it is possible that a range of

single SWE values could best describe within footprint SWE. For example, using the

data from Figure A.1 , it is possible to manually modify the SWE, within 1 STDEV of the

original mean, and produce a strong relationship with ATb37"19 (Figure A.2).
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Figure A.2. Adjusted mean SWE and original SWE vs ATb37-19

Figure A.2 b shows that the manual, iterative adjustments made to each original

mean SWE drastically improve the relationship. Figure A.2 a shows how the mean SWE

were adjusted. A positive adjustment means that the new SWE is higher than the

original, while a negative indicates that the new SWE is lower than the original. Both

positive and negative adjustments were made, and in some cases, no adjustment was
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necessary. In most cases, the adjustments in SWE made were almost a full STDEV

away from the original mean. Figure A.2 shows that, by working within 1 STDEV of the
mean SWE, it is possible to generate a very strong relationship with âTb37"19.

The variability in SWE at each site and the ability to produce a very strong

relationship with ATb37"19 bring into question the validity of using a mean site SWE for

comparison with footprint Tb. However, without a better perspective of how 30 site

measurements compare to the spatial distribution of SWE within the entire footprint, it is

difficult to suggest an alternative. Data were collected in Churchill, Manitoba, in February

2010 to better understand how 30 random depth measurements compare to a surface

generated from 940 gridded depth measurements in a 50 ? 90 m homogenous flat,

tundra like fen (Figure A.3).
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Figure A.3. Open fen site, Churchill, Manitoba

The 940 probe measurements were taken at 1 .5 m intervals along 14 transects which

were spaced 3.5 m apart. To replicate a typical site, 30 measurements were taken

independent of the 940 at random locations through the center of the measurement grid.

The descriptive statistics for both data sets were calculated (Table A.1).
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Table A.1. Descriptive statistics oí the Churchill Magna Probe experiment

30 random depth
940 gridded depth

Bean (em)
32.1
32.3

STDE\
7.5
6.7

CV
0.23
0.20

Min
17.2
12.7

Max
48.5
57.5

The mean depth from both methods is essentially the same. However, the 30

measurements show slightly more variability and do not capture as wide a range in

depth. Interestingly, despite a small difference in standard deviation, using either
technique would yield a very similar mean snow depth.

However, since Tb is an integration of all snow within a footprint, it is necessary
to examine if the 30 random measurements can capture the spatial variability within the

50 ? 90 m test area. An interpolated surface was generated from the 940 measurements

using simple kriging (Figure A.4).

Random depth
measurements

Snow Depth (cm)
interpolated (kriging)
from sampling grid

12.7-19.4

19.4 - 24.1

24.1 - 27.2

j 27.2-29.4
L Zl 29.4-31.0
[ I 31.0-33.0
I j 33.0-36.2
I I 36.2-40.9
I : I 40.9-47.6
P-" Ì 47.6 - 57.5

Figure A.4. interpolated surface from 940 probe measurements
and location of 30 random measurements

Using a grid of measurements, it is possible to effectively map the spatial
distribution of snow depth. Wind driven re-distribution through the winter produces a
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more or less level, dense slab, snow surface (Figure A.3). As a result, the variability in

depth on the interpolated map corresponds to the surface roughness, vegetation cover,
or micro-topography of the underlying ground. In these types of sites, pockets of deeper
SWE are usually associated with water filled depressions while shallower depths are
located on hummocky areas between depressions.

To look at the difference between the 30 random points and the interpolated

surface, the residual error between the two depths was calculated (residual = depth at

random point - depth predicted from interpolated surface). The residuals (un-
standardized) were plotted for each of the 30 probe locations (Figure A.5).

Snow Depth (cm)
interpolated (kriging)
from sampling grid

12.7-19.4

19.4-24.1

24.1-27.2
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I | 33.0 - 36.2
I I 36.2-40.9

I 40.9-47.6
I >: I 47.6-57.5
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Residual Error (cm)(30 point snow depth - predicted)

I I -19.4 to -9.1
I I -9.110-4.8
1 j -4.8 to -2.8
I I -2.6 to -0.80
I I -0.80 to 0.62
I I 0.62 to 2.3
I I 2.3 to 3.5
I I 3.5 to 6.2
[ j 6.2 to 12.8

Figure Â.5. Residual error between 30 random measurements and predicted
surface from interpolation of 940 gridded measurements

Negative residuals show areas where the actual depth is lower than the predicted
depth (Red). Positive residuals show areas where actual depth is higher than predicted
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(Green). With the exception of one large negative value (-19 cm), the distribution of

residuals is fairly normal showing equal points of negative and positive residual error.

Moreover, all but six points have an error of equal to or less than one standard deviation

of the mean (~ 7 cm).

These data show not only that using either 30 points or 940 points will produce

similar mean depth, but also that, in most cases, the depths at the 30 random locations

will be ± 1 STDEV of the surface generated by 940 points. However, the inverse is that

the interpolated surface cannot accurately predict all of the 30 depth measurements to

within 1 STDEV. Hence, the spatial scale of snow depth variability can be less than 2 m

at this type of site. It should be noted that some uncertainly in the surface is a product of

using GPS. The non-differential GPS on the Magna Probe has an absolute accuracy of ±
10 m and a relative accuracy of ± 2 m on such grid measurements. Nonetheless, this

site provides a useful glimpse into the variability of snow depth in an area of similar

dimensions to a high resolution airborne footprint. Despite the spatial variability, it

presents the most ideal case in that the terrain and land cover (surface roughness) is

very uniform compared to the shield tundra of Daring Lake. These sampling techniques

should be employed in the future in the tundra to help quantify the spatial variability of

depth and SWE in different terrain and land cover. Moreover, these methods would be

very useful in establishing a sampling design to accurately reflect the snow cover

properties in an efficient a manner as possible.

Magna Probe SWE

Magna Probe measurements along transects provide a sense of the spatial

distribution of SWE through a footprint. Magna Probe depth measurements were taken

at roughly equal intervals along flight lines (5 m). The density data were also taken at

roughly equal intervals and applied to the nearest depth measurement. As a result,
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transect SWE can be plotted to provide a spatially proportional footprint SWE. Moreover,

by plotting successive measurements, the variability in footprint depth can be examined.
The linear relationship among SWE vs. ATb37"19 from the flat tundra Magna Probe

data was plotted (Figure A.6 a). The Magna Probe SWE from four example footprints

was plotted (Figure A.6 b). Two of the footprints were selected which fit well (C and D),

and two footprints were selected which do not fit well (A and B) with the linear

relationship between SWE vs ATb37"19. The mean footprint SWE calculated from the
Magna Probe data was also plotted as well as the mean SWE required to fit well with

ATb37"19. The mean Magna Probe SWE is shown as the thick black line in the four

footprint areas and the dashed shows where the SWE would need to be in order to be

on the line of best fit for ATb3719 SWE (Figure A.6 b).
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Figure A.6. SWE from four example footprints and SWE vs ATb37"19
for Magna Probe SWE < 120 mm on flat tundra
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Each footprint (A, B, C, D) shows a high range (~ 100 mm) of SWE across the 80 m
distance. In footprints A and B, the mean SWE is too low and would have to be higher in

order to be a better fit with the linear relationship in Figure A.6 a. In footprint C, the SWE

would need to be lower and essentially the same as footprint B as they both have a very

similar ATb37"19. In footprint D, the mean SWE fits perfectly on the linear relationship with
ATb37"19.

The variability in SWE in footprints A and D appears to be lower, suggesting that

the mean is representative of the spatial distribution of SWE in the footprint. However, in

footprints B and C, the mean is skewed to higher SWE by spatially constrained extreme
values. In the case of footprint C, ignoring the high SWE at the end of the transect would

lower the mean SWE and produce a better fit with ATb37"19. In footprint B, the high SWE

could be disregarded; however, this would lower the mean SWE and make the

relationship with ATb37"19 even worse.
Based on the dashed lines in Figure A.6 b, footprints A, B, and C, all require a

similar mean SWE to fit well with ATb37"19. Upon first glance, it seems that each footprint
has a dissimilar distribution of SWE. A Games-Howell difference of means test was used

to determine if the SWE in each footprint are significantly different. None of the four

example footprints has significantly different SWE (Table A.2).

Table A.2. Difference of mean SWE for the four example footprints in Figure A.6

Difference in
Footprint SWE

B
c
D
A

C
D

Mean
Difference
SWE (mm)

(GH Post-hoc)

-12.82
-19.97

2.65
-12.82

-32.79
-10.16
22.63

Sig

.900

.625

.998

.900

.401

.950

.552
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Some of the footprints have a large mean difference; however, they are not close

to being statistically different. Despite the statistical indifference in SWE, the ATb37"19 for
each footprint ranges from -24 to -37 K. The difference in ATb37"19 of 13 K should be
related to a change in SWE. Part of the reason for the statistical indifference in SWE is

the low sample ? in each footprint (10 to 15), as well as the presence of extreme values.

The footprints with the highest (-22 K) and lowest (-44 K) ATb37"19 from Figure A.6 a)
were examined to see if they had dissimilar distributions of SWE (Figure A.7).
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Figure A.7. The distribution of SWE in two footprints with
the lowest and highest ATb37"19

The mean difference in SWE of 46 mm between the two footprints in Figure A.7 b

is significant (p < 0.05). Despite the means being different, there are similarities in SWE

in some locations along each transect. Moreover, both footprints show that on flat tundra

the depth of SWE can vary considerably over an 80 m distance. The difference in SWE

along the two transects is not as distinct as expected for a 22 K difference in ATb37"19.
This illustrates one of the greatest limitations of using high resolution airborne
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radiometer data. The benefit of airborne data is that many footprints can be sampled

over different terrain along many transects. The hope is to discover a large contrast in

ATb37"19 or SWE which can then be used to build a predictive model. However, airborne

data collected in one season are of limited use to achieve this goal. There is

considerable variability within most footprints, and the mean SWE among different

footprints is often similar. It is not until the end points of ATb37"19 are examined (Figure
A.7) that is there a significant difference in SWE.

The Magna Probe data help to show that within small footprints (80 m), there can

be a large range of SWE for terrain assumed to be relatively homogenous. The

variability in footprint SWE brings into question what can hope to be achieved in terms of

relating ATb37"19 to a single value of SWE. It is more likely that ATb37"19 can be related to
relative differences in SWE over large areas which integrate the small scale variability.

Moreover, to build a model for estimating SWE from ATb37"19, it is necessary to include

other factors to help reduce the uncertainty. Hence, SWE is likely to be predicted with a

multivariate approach which includes more than just ATb37"19.
Effect of Land Cover

As discussed in Section 6.2.2.3, a clear relationship between SWE and Tb is

hampered by other snow and land cover properties. As discussed in Chapter 4, terrain is

clearly not the only factor controlling the distribution of SWE. Land cover and surface

roughness should also be considered.

Land cover can influence the distribution of SWE in many ways. The presence of

ground vegetation at the base or throughout the snowpack can act as a thermal insulator

which helps keep the ground temperature warmer than on bare ground. The vegetation

helps increase the snowpack temperature gradient which leads to greater depth hoar

development and larger snow grain sizes (Sturm et a!., 2000). Furthermore, the height of

vegetation also plays a role. Shrubs and dwarf birch trap drifting snow which results in
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greater snow depth and limits the development of dense slab layers until the shrubs

become completely covered with snow. As a result, the bulk snow density in shrub areas

is always lower. Essentially the surface roughness has a dominant influence on snow

accumulation and snow grain morphology (Figure A.8).

;l
High Density Wind Slab(s)

itiSL ".^* .'.. 3%A^

Low Density Depth Hoar

Figure A.8. Idealized relationship between surface roughness
and snow pack properties

T o assess the effect of land cover, the Magna Probe SWE for flat tundra was

compared to the GiMWT Landcover Classification discussed in Chapter 3. Figure A.9

shows mean SWE with error bars of ± 1 STDEV for each Flat tundra Landcover Class.

N = 83 26 226 344 63 6 412 37 11

LU 200
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4 - Sedge Meadow
6 - Tussock, Hummock
7 - Heath Tundra
10 -Bedrock
II -Tall Shrub
1 3 - Heath Boulder
14 -Heath Bedrock
1 S - Boulder Association

Figure A.9. Mean Magna Probe SWE (± 1 STDEV) for each land cover class

Figure A.9 shows that no land cover class has distinctly higher or lower SWE.

The highest mean SWE are in the Tall Shrub and Boulder Classes; however, both
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classes have relatively low sample numbers. The Tall Shrub class should have the

highest SWE, but such areas are not abundant along the transect lines. The variability

(STDEV) for each class is quite high which suggests that there is a high similarity in

SWE among the classes and little difference in mean SWE. As a result, there are no

dominant patterns between SWE and land cover using the LANDSAT classification data.

The variability in SWE shown in Figure A.9 is present at the sub-land cover scale.

Hence, as Figure A.8 suggests, local surface roughness may play a greater role in

describing SWE than regional terrain and land cover classes. Given the variability in

SWE for flat tundra, it is remarkable that there is any discernable relationship between

ATb37"19 and SWE.
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