43 research outputs found

    Constructing Light Spanners Deterministically in Near-Linear Time

    Get PDF
    Graph spanners are well-studied and widely used both in theory and practice. In a recent breakthrough, Chechik and Wulff-Nilsen [Shiri Chechik and Christian Wulff-Nilsen, 2018] improved the state-of-the-art for light spanners by constructing a (2k-1)(1+epsilon)-spanner with O(n^(1+1/k)) edges and O_epsilon(n^(1/k)) lightness. Soon after, Filtser and Solomon [Arnold Filtser and Shay Solomon, 2016] showed that the classic greedy spanner construction achieves the same bounds. The major drawback of the greedy spanner is its running time of O(mn^(1+1/k)) (which is faster than [Shiri Chechik and Christian Wulff-Nilsen, 2018]). This makes the construction impractical even for graphs of moderate size. Much faster spanner constructions do exist but they only achieve lightness Omega_epsilon(kn^(1/k)), even when randomization is used. The contribution of this paper is deterministic spanner constructions that are fast, and achieve similar bounds as the state-of-the-art slower constructions. Our first result is an O_epsilon(n^(2+1/k+epsilon\u27)) time spanner construction which achieves the state-of-the-art bounds. Our second result is an O_epsilon(m + n log n) time construction of a spanner with (2k-1)(1+epsilon) stretch, O(log k * n^(1+1/k) edges and O_epsilon(log k * n^(1/k)) lightness. This is an exponential improvement in the dependence on k compared to the previous result with such running time. Finally, for the important special case where k=log n, for every constant epsilon>0, we provide an O(m+n^(1+epsilon)) time construction that produces an O(log n)-spanner with O(n) edges and O(1) lightness which is asymptotically optimal. This is the first known sub-quadratic construction of such a spanner for any k = omega(1). To achieve our constructions, we show a novel deterministic incremental approximate distance oracle. Our new oracle is crucial in our construction, as known randomized dynamic oracles require the assumption of a non-adaptive adversary. This is a strong assumption, which has seen recent attention in prolific venues. Our new oracle allows the order of the edge insertions to not be fixed in advance, which is critical as our spanner algorithm chooses which edges to insert based on the answers to distance queries. We believe our new oracle is of independent interest

    Parallel Greedy Spanners

    Full text link
    A tt-spanner of a graph is a subgraph that tt-approximates pairwise distances. The greedy algorithm is one of the simplest and most well-studied algorithms for constructing a sparse spanner: it computes a tt-spanner with n1+O(1/t)n^{1+O(1/t)} edges by repeatedly choosing any edge which does not close a cycle of chosen edges with t+1t+1 or fewer edges. We demonstrate that the greedy algorithm computes a tt-spanner with n1+O(1/t)n^{1 + O(1/t)} edges even when a matching of such edges are added in parallel. In particular, it suffices to repeatedly add any matching where each individual edge does not close a cycle with t+1t +1 or fewer edges but where adding the entire matching might. Our analysis makes use of and illustrates the power of new advances in length-constrained expander decompositions

    On Strong Diameter Padded Decompositions

    Get PDF
    Given a weighted graph G=(V,E,w), a partition of V is Delta-bounded if the diameter of each cluster is bounded by Delta. A distribution over Delta-bounded partitions is a beta-padded decomposition if every ball of radius gamma Delta is contained in a single cluster with probability at least e^{-beta * gamma}. The weak diameter of a cluster C is measured w.r.t. distances in G, while the strong diameter is measured w.r.t. distances in the induced graph G[C]. The decomposition is weak/strong according to the diameter guarantee. Formerly, it was proven that K_r free graphs admit weak decompositions with padding parameter O(r), while for strong decompositions only O(r^2) padding parameter was known. Furthermore, for the case of a graph G, for which the induced shortest path metric d_G has doubling dimension ddim, a weak O(ddim)-padded decomposition was constructed, which is also known to be tight. For the case of strong diameter, nothing was known. We construct strong O(r)-padded decompositions for K_r free graphs, matching the state of the art for weak decompositions. Similarly, for graphs with doubling dimension ddim we construct a strong O(ddim)-padded decomposition, which is also tight. We use this decomposition to construct (O(ddim),O~(ddim))-sparse cover scheme for such graphs. Our new decompositions and cover have implications to approximating unique games, the construction of light and sparse spanners, and for path reporting distance oracles

    Expander Decomposition in Dynamic Streams

    Get PDF
    In this paper we initiate the study of expander decompositions of a graph G = (V, E) in the streaming model of computation. The goal is to find a partitioning ? of vertices V such that the subgraphs of G induced by the clusters C ? ? are good expanders, while the number of intercluster edges is small. Expander decompositions are classically constructed by a recursively applying balanced sparse cuts to the input graph. In this paper we give the first implementation of such a recursive sparsest cut process using small space in the dynamic streaming model. Our main algorithmic tool is a new type of cut sparsifier that we refer to as a power cut sparsifier - it preserves cuts in any given vertex induced subgraph (or, any cluster in a fixed partition of V) to within a (?, ?)-multiplicative/additive error with high probability. The power cut sparsifier uses O?(n/??) space and edges, which we show is asymptotically tight up to polylogarithmic factors in n for constant ?

    On the Edge Crossings of the Greedy Spanner

    Get PDF
    The greedy t-spanner of a set of points in the plane is an undirected graph constructed by considering pairs of points in order by distance, and connecting a pair by an edge when there does not already exist a path connecting that pair with length at most t times the Euclidean distance. We prove that, for any t > 1, these graphs have at most a linear number of crossings, and more strongly that the intersection graph of edges in a greedy t-spanner has bounded degeneracy. As a consequence, we prove a separator theorem for greedy spanners: any k-vertex subgraph of a greedy spanner can be partitioned into sub-subgraphs of size a constant fraction smaller, by the removal of O(?k) vertices. A recursive separator hierarchy for these graphs can be constructed from their planarizations in linear time, or in near-linear time if the planarization is unknown
    corecore