1,583 research outputs found

    Defects in Quantum Computers

    Get PDF
    The shift of interest from general purpose quantum computers to adiabatic quantum computing or quantum annealing calls for a broadly applicable and easy to implement test to assess how quantum or adiabatic is a specific hardware. Here we propose such a test based on an exactly solvable many body system -- the quantum Ising chain in transverse field -- and implement it on the D-Wave machine. An ideal adiabatic quench of the quantum Ising chain should lead to an ordered broken symmetry ground state with all spins aligned in the same direction. An actual quench can be imperfect due to decoherence, noise, flaws in the implemented Hamiltonian, or simply too fast to be adiabatic. Imperfections result in topological defects: Spins change orientation, kinks punctuating ordered sections of the chain. The number of such defects quantifies the extent by which the quantum computer misses the ground state, and is, therefore, imperfect.Comment: 8 pages, 7 figures, to appear in Scientific Reports, authors' list complete

    The Complexity of Translationally Invariant Spin Chains with Low Local Dimension

    Get PDF
    We prove that estimating the ground state energy of a translationally-invariant, nearest-neighbour Hamiltonian on a 1D spin chain is QMAEXP-complete, even for systems of low local dimension (roughly 40). This is an improvement over the best previously-known result by several orders of magnitude, and it shows that spin-glass-like frustration can occur in translationally-invariant quantum systems with a local dimension comparable to the smallest-known non-translationally-invariant systems with similar behaviour. While previous constructions of such systems rely on standard models of quantum computation, we construct a new model that is particularly well-suited for encoding quantum computation into the ground state of a translationally-invariant system. This allows us to shift the proof burden from optimizing the Hamiltonian encoding a standard computational model to proving universality of a simple model. Previous techniques for encoding quantum computation into the ground state of a local Hamiltonian allow only a linear sequence of gates, hence only a linear (or nearly linear) path in the graph of all computational states. We extend these techniques by allowing significantly more general paths, including branching and cycles, thus enabling a highly efficient encoding of our computational model. However, this requires more sophisticated techniques for analysing the spectrum of the resulting Hamiltonian. To address this, we introduce a framework of graphs with unitary edge labels. After relating our Hamiltonian to the Laplacian of such a unitary labelled graph, we analyse its spectrum by combining matrix analysis and spectral graph theory techniques

    PDE boundary conditions that eliminate quantum weirdness: a mathematical game inspired by Kurt Gödel and Alan Turing

    Get PDF
    Although boundary condition problems in quantum mathematics (QM) are well known, no one ever used boundary conditions technology to abolish quantum weirdness. We employ boundary conditions to build a mathematical game that is fun to learn, and by using it you will discover that quantum weirdness evaporates and vanishes. Our clever game is so designed that you can solve the boundary condition problems for a single point if-and-only-if you also solve the “weirdness” problem for all of quantum mathematics. Our approach differs radically from Dirichlet, Neumann, Robin, or Wolfram Alpha. We define domain Ω in one-dimension, on which a partial differential equation (PDE) is defined. Point α on ∂Ω is the location of a boundary condition game that involves an off-center bi-directional wave solution called Æ, an “elementary wave.” Study of this unusual, complex wave is called the Theory of Elementary Waves (TEW). We are inspired by Kurt Gödel and Alan Turing who built mathematical games that demonstrated that axiomatization of all mathematics was impossible. In our machine quantum weirdness vanishes if understood from the perspective of a single point α, because that pinpoint teaches us that nature is organized differently than we expect

    The ghost in the machine: governing ‘data’ in intellectual monopolies

    Get PDF
    The lack of data regulation enables different ways of value extraction and benefits only a few platform companies globally, writes Farwa Sia
    corecore