4,443 research outputs found

    CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images

    Full text link
    With the powerfulness of convolution neural networks (CNN), CNN based face reconstruction has recently shown promising performance in reconstructing detailed face shape from 2D face images. The success of CNN-based methods relies on a large number of labeled data. The state-of-the-art synthesizes such data using a coarse morphable face model, which however has difficulty to generate detailed photo-realistic images of faces (with wrinkles). This paper presents a novel face data generation method. Specifically, we render a large number of photo-realistic face images with different attributes based on inverse rendering. Furthermore, we construct a fine-detailed face image dataset by transferring different scales of details from one image to another. We also construct a large number of video-type adjacent frame pairs by simulating the distribution of real video data. With these nicely constructed datasets, we propose a coarse-to-fine learning framework consisting of three convolutional networks. The networks are trained for real-time detailed 3D face reconstruction from monocular video as well as from a single image. Extensive experimental results demonstrate that our framework can produce high-quality reconstruction but with much less computation time compared to the state-of-the-art. Moreover, our method is robust to pose, expression and lighting due to the diversity of data.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence, 201

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Cross-Platform Presentation of Interactive Volumetric Imagery

    Get PDF
    Volume data is useful across many disciplines, not just medicine. Thus, it is very important that researchers have a simple and lightweight method of sharing and reproducing such volumetric data. In this paper, we explore some of the challenges associated with volume rendering, both from a classical sense and from the context of Web3D technologies. We describe and evaluate the pro- posed X3D Volume Rendering Component and its associated styles for their suitability in the visualization of several types of image data. Additionally, we examine the ability for a minimal X3D node set to capture provenance and semantic information from outside ontologies in metadata and integrate it with the scene graph

    Overlap Removal of Dimensionality Reduction Scatterplot Layouts

    Full text link
    Dimensionality Reduction (DR) scatterplot layouts have become a ubiquitous visualization tool for analyzing multidimensional data items with presence in different areas. Despite its popularity, scatterplots suffer from occlusion, especially when markers convey information, making it troublesome for users to estimate items' groups' sizes and, more importantly, potentially obfuscating critical items for the analysis under execution. Different strategies have been devised to address this issue, either producing overlap-free layouts, lacking the powerful capabilities of contemporary DR techniques in uncover interesting data patterns, or eliminating overlaps as a post-processing strategy. Despite the good results of post-processing techniques, the best methods typically expand or distort the scatterplot area, thus reducing markers' size (sometimes) to unreadable dimensions, defeating the purpose of removing overlaps. This paper presents a novel post-processing strategy to remove DR layouts' overlaps that faithfully preserves the original layout's characteristics and markers' sizes. We show that the proposed strategy surpasses the state-of-the-art in overlap removal through an extensive comparative evaluation considering multiple different metrics while it is 2 or 3 orders of magnitude faster for large datasets.Comment: 11 pages and 9 figure
    • …
    corecore