57 research outputs found

    Combining Sentiment Lexica with a Multi-View Variational Autoencoder

    Get PDF
    When assigning quantitative labels to a dataset, different methodologies may rely on different scales. In particular, when assigning polarities to words in a sentiment lexicon, annotators may use binary, categorical, or continuous labels. Naturally, it is of interest to unify these labels from disparate scales to both achieve maximal coverage over words and to create a single, more robust sentiment lexicon while retaining scale coherence. We introduce a generative model of sentiment lexica to combine disparate scales into a common latent representation. We realize this model with a novel multi-view variational autoencoder (VAE), called SentiVAE. We evaluate our approach via a downstream text classification task involving nine English-Language sentiment analysis datasets; our representation outperforms six individual sentiment lexica, as well as a straightforward combination thereof.Comment: To appear in NAACL-HLT 201

    Bivariate Beta-LSTM

    Full text link
    Long Short-Term Memory (LSTM) infers the long term dependency through a cell state maintained by the input and the forget gate structures, which models a gate output as a value in [0,1] through a sigmoid function. However, due to the graduality of the sigmoid function, the sigmoid gate is not flexible in representing multi-modality or skewness. Besides, the previous models lack modeling on the correlation between the gates, which would be a new method to adopt inductive bias for a relationship between previous and current input. This paper proposes a new gate structure with the bivariate Beta distribution. The proposed gate structure enables probabilistic modeling on the gates within the LSTM cell so that the modelers can customize the cell state flow with priors and distributions. Moreover, we theoretically show the higher upper bound of the gradient compared to the sigmoid function, and we empirically observed that the bivariate Beta distribution gate structure provides higher gradient values in training. We demonstrate the effectiveness of bivariate Beta gate structure on the sentence classification, image classification, polyphonic music modeling, and image caption generation.Comment: AAAI 202

    Neural ODEs with stochastic vector field mixtures

    Full text link
    It was recently shown that neural ordinary differential equation models cannot solve fundamental and seemingly straightforward tasks even with high-capacity vector field representations. This paper introduces two other fundamental tasks to the set that baseline methods cannot solve, and proposes mixtures of stochastic vector fields as a model class that is capable of solving these essential problems. Dynamic vector field selection is of critical importance for our model, and our approach is to propagate component uncertainty over the integration interval with a technique based on forward filtering. We also formalise several loss functions that encourage desirable properties on the trajectory paths, and of particular interest are those that directly encourage fewer expected function evaluations. Experimentally, we demonstrate that our model class is capable of capturing the natural dynamics of human behaviour; a notoriously volatile application area. Baseline approaches cannot adequately model this problem
    • …
    corecore