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Abstract
When assigning quantitative labels to a
dataset, different methodologies may rely on
different scales. In particular, when assigning
polarities to words in a sentiment lexicon,
annotators may use binary, categorical, or
continuous labels. Naturally, it is of interest to
unify these labels from disparate scales to both
achieve maximal coverage over words and to
create a single, more robust sentiment lexicon
while retaining scale coherence. We introduce
a generative model of sentiment lexica to
combine disparate scales into a common latent
representation. We realize this model with
a novel multi-view variational autoencoder
(VAE), called SentiVAE. We evaluate our
approach via a downstream text classification
task involving nine English-Language sen-
timent analysis datasets; our representation
outperforms six individual sentiment lexica, as
well as a straightforward combination thereof.

1 Introduction

Sentiment lexica provide an easy way to automat-
ically label texts with polarity values, and are also
frequently transformed into features for supervised
models, including neural networks (Palogiannidi
et al., 2016; Ma et al., 2018). Indeed, given their
utility, a veritable cottage industry has emerged
focusing on the design of sentiment lexica. In prac-
tice, using any single lexicon, unless specifically
and carefully designed for the particular domain
of interest, has several downsides. For example,
any lexicon will typically have low coverage
compared to the language’s entire vocabulary,
and may have misspecified labels for the domain.
In many cases, it may therefore be desirable to
combine multiple sentiment lexica into a single
representation. Indeed, some research on unifying

Figure 1: A depiction of the “encoder” portion of Sen-
tiVAE. The word peppy has polarity values of 0.65 and
pos in the SenticNet and Hu-Liu lexica, respectively.
These values are “encoded” into two three-dimensional
vectors, which are then summed and added to (1, 1, 1)
(not shown) to form the parameters of a Dirichlet over
the latent representation of the word’s polarity value.

such lexica has emerged (Emerson and Declerck,
2014; Altrabsheh et al., 2017), borrowing ideas
from crowdsourcing (Raykar et al., 2010; Hovy
et al., 2013). However, this is a non-trivial task,
because lexica can use binary, categorical, or
continuous scales to quantify polarity—in addition
to different interpretations for each—and thus
cannot easily be combined. In Fig. 1, we show an
example of the same word labeled using different
lexica to illustrate the nature of the challenge.

To combine sentiment lexica with disparate
scales, we introduce SentiVAE, a novel multi-
view variant of the variational autoencoder (VAE)
(Kingma and Welling, 2014). SentiVAE, visualized
as a graphical model in Fig. 2, differs from the orig-
inal VAE in two ways: (i) it uses a Dirichlet latent
variable (rather than a Gaussian) for each word in
the combined vocabulary, and (ii) it has multiple
emission distributions—one for each lexicon. Be-
cause the latent variables are shared across the lex-
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Lexicon Source N Dom

SentiWordNet WordNet 14107 [−1, 1]2
MPQA Newswire 4397 {0, 1}
SenticNet — 100000 [−1, 1]
Hu-Liu Product reviews 6790 {0, 1}
GI — 4206 {0, 1}
VADER Social media 7489 {0, . . . , 8}10

Table 1: Descriptive statistics for the sentiment lexica.
N : vocabulary size. Dom: Domain of polarity values.

ica, we are able to derive a common latent represen-
tation of the words’ polarities. The resulting model
is spiritually related to a multi-view learning ap-
proach (Sun, 2013), where each view corresponds
to a different lexicon. Experimentally, we use
SentiVAE to combine six commonly used English-
language sentiment lexica with disparate scales.

We evaluate the resulting representation via
a text classification task involving nine English-
language sentiment analysis datasets. For each
dataset, we transform each text into an average
polarity value using either our representation, one
of the six commonly used sentiment lexica, or a
straightforward combination thereof. We then train
a classifier to predict the overall sentiment of each
text from its average polarity value. We find that
our representation outperforms the individual lex-
ica, as well as the straightforward combination for
some datasets. Our representation is particularly
efficacious for datasets from domains that are not
well-supported by standard sentiment lexica.1

The existing research that is most closely re-
lated to our work is SentiMerge (Emerson and De-
clerck, 2014), a Bayesian approach for aligning
sentiment lexica with different continuous scales.
SentiMerge consists of two steps: (i) aligning the
lexica via rescaling, and (ii) combining the rescaled
lexica using a Gaussian distribution. The authors
perform token-level evaluation using a single senti-
ment analysis dataset where each token is labeled
with its contextually dependent sentiment. Because
SentiMerge can only combine lexica with continu-
ous scales, we do not include it in our evaluation.

2 Sentiment Lexica and Scales

We use the following commonly used English-
language sentiment lexica: SentiWordNet (Bac-
cianella et al., 2010), MPQA (Wilson et al., 2005),
SenticNet 5 (Cambria et al., 2014), Hu-Liu (Hu and

1Our representation and code are available at https://
github.com/ahoho/SentiVAE.

Liu, 2004), GI (Stone et al., 1962), and VADER
(Hutto and Gilbert, 2014). Descriptive statistics for
each lexicon are shown in Tab. 1. Each word in
SentiWordNet is labeled with two real values, each
in the interval [0, 1], corresponding to the strength
of positive and negative sentiment (e.g., the label
(0 0) is neutral, while the label (1 0) is maximally
positive). Each word in VADER is labeled by ten
different human evaluators, with each evaluator pro-
viding a polarity value on a nine-point scale (where
the midpoint is neutral), yielding a 10-dimensional
label. MPQA, Hu-Liu, and GI all use binary scales.
Lastly, each word in SenticNet is labeled with a
real value in the interval [−1, 1], where 0 is neutral.

3 SentiVAE

We first describe a figurative generative process for
a single sentiment lexicon d ∈ D, where D is a set
of sentiment lexica. Imagine there is a true (latent)
polarity value zw associated with each word w
in the lexicon’s vocabulary. When the lexicon’s
creator labels that word according to their chosen
scale (e.g., thumbs-up or thumbs-down, a real
value in the interval [0, 1]), they deterministically
transform this true value to their chosen scale
via a function f( · ; θd).2 Sometimes, noise is
introduced during this labeling process, corrupting
the label as it leaves the ethereal realm and
producing the (observed) polarity label xw

d . They
then add this potentially noisy label to the lexicon.

Given a lexicon of observed polarity labels, the
latent polarity values can be inferred using a VAE.
The original VAE posits a generative model of ob-
served data X and latent variables Z: P (X ,Z) =
P (X | Z)P (Z). Inference of Z then proceeds by
approximating the (intractable) posterior P (Z | X )
with a Gaussian distribution, factorized over the in-
dividual latent variables. A parameterized encoder
function compresses X into Z , while a parameter-
ized decoder function reconstructs X from Z .

SentiVAE extends the original VAE model to
combine multiple lexica with disparate scales, pro-
ducing a common latent representation of the polar-
ity value for each word in the combined vocabulary.

Generative process. Given a set of sentiment
lexica D with a combined vocabulary W , Senti-
VAE posits a common latent representation zw of
the polarity value for each word w ∈ W , where zw

is a three-dimensional categorical distribution over

2Parameterized by lexicon-specific weights θd.
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αw

zw

ρwd θd

xwd

w ∈ W d ∈ D

Figure 2: Generative model for SentiVAE.

the sentiments positive, negative, and neutral.
The generative process starts by drawing each

latent polarity value zw from a three-dimensional
Dirichlet prior, parameterized by αw = (1, 1, 1):

zw ∼ Dir(αw). (1)

If the word is uncontroversial,3 we spur this
prior somewhat using the number of lexica in
which the word appears c(w). Specifically, we
add c(w) to the parameter for the sentiment
associated with that word in the lexica, e.g.,
αSUPERB = (1 + c(SUPERB), 1, 1). This has the ef-
fect of regularizing the inferred latent polarity value
toward the desired distribution over sentiments.

Having generated zw, the process proceeds by
“decoding” zw into each lexicon’s chosen scale.
First, for each lexicon d ∈ D, zw is determinis-
tically transformed via neural network f( · ; θd)
with a single 32-dimensional hidden layer,
parameterized by lexicon-specific weights θd:

ρwd = f(zw;θd). (2)

The transformed value ρwd is then used to generate
the (observed) polarity label xw

d for that lexicon:

xw
d ∼ Pd(x

w
d | ρwd ). (3)

The dimensionality of ρwd and the emission distribu-
tion Pd are lexicon-specific. For SentiWordNet, Pd

3We say that a word is uncontroversial if there is strong
agreement across the sentiment lexica in which it appears.
Even without this spurring, the inferred latent representation
typically separates into the three sentiment classes, but perfor-
mance on our text classification task is somewhat diminished.

Dataset Source N Classes

IMDB Movies 25000 2
Yelp Product reviews 100000 5 / 3
SemEval Twitter 7668 3
MultiDom Product reviews 6500 2
ACL Scientific reviews 248 5 / 3
ICLR Scientific reviews 2166 10 / 3

Table 2: Descriptive statistics for the training portions
of the sentiment analysis datasets. N : number of texts.

is a two-dimensional Gaussian with mean ρwd and
a diagonal covariance matrix equal to 0.01I; for
VADER, Pd consists of ten nine-dimensional cate-
gorical distributions, collectively parameterized by
ρwd ; for MPQA, Hu-Liu, and GI, Pd is a Bernoulli
distribution, parameterized by ρwd ; and for Sen-
ticNet, Pd is a univariate Gaussian with mean and
variance each an element in a two-dimensional ρwd .

Inference. Inference involves forming the pos-
terior distribution over the latent polarity values
Z given the observed polarity labels X . Because
computing the normalizing constant P (X ) is in-
tractable, we instead approximate the posterior
with a family of distributions Qλ(Z), indexed by
variational parameters λ. Specifically, we use

Qλ(Z) =
∏
w∈W

Qβw(zw) =
∏
w∈W

Dir(βw). (4)

To construct βw, we first define a neural net-
work g(·; φd), with a single 32-dimensional hid-
den layer, which “encodes” xw

d into a three-
dimensional vector. The output of this neural net-
work is then transformed via a softmax as follows:

ωw
d = softmax

(
g(xw

d ; φd)
)

(5)

βw = 1 +
∑
d∈D

ωw
d . (6)

The intuition behind βw can be understood by
appealing to the “pseudocount” interpretation of
Dirichlet parameters. Each lexicon contributes ex-
actly one pseudocount, divided among positive,
negative, and neutral, to what would otherwise be
a symmetric, uniform Dirichlet distribution. As a
consequence of this construction, words that ap-
pear in more lexica will have more concentrated
Dirichlets. Intuitively, this property is appealing.

We optimize the resulting ELBO objective (Blei
et al., 2017) with respect to the variational parame-
ters via stochastic variational inference (Hoffman
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IMDB 2C Yelp 5C Yelp 3C SemEval 3C MultiDom 2C ACL 5C ACL 3C ICLR 10C ICLR 3C

SentiVAE EQ[z
w] 72.7 49.8 57.5 46.0 70.8 66.7 73.3 92.6 87.0

SentiVAE βw 73.4 49.7 59.4 52.2 74.7 73.3 80.0 92.6 86.5

SentiWordNet 63.4 36.0 47.6 32.2 62.0 60.0 53.3 89.1 83.5
MPQA 65.4 44.0 53.0 29.9 67.4 60.0 53.3 89.1 83.5

SenticNet 60.5 38.4 43.4 37.2 62.3 60.0 53.3 89.1 83.9
Hu-Liu 67.2 46.6 56.4 31.5 69.4 60.0 53.3 89.1 83.5

GI 58.4 40.7 47.9 31.3 61.6 60.0 53.3 89.1 83.5
VADER 71.7 46.8 59.3 38.5 73.5 66.7 66.7 94.3 86.1

Combined 75.6 51.0 64.1 50.6 75.4 66.7 66.7 93.9 86.1

Table 3: Classification accuracies for our representation, six lexica, and a straightforward combination thereof.

et al., 2013) using Adam (Kingma and Ba, 2015)
in the Pyro framework (Bingham et al., 2018). The
standard reparameterization trick used in the origi-
nal VAE does not apply to models with Dirichlet-
distributed latent variables, so we use the general-
ized reparameterization trick of Ruiz et al. (2016).

4 Experiments and Results

To evaluate our approach, we first use SentiVAE
to combine the six lexica described in §2. For
each word w in the combined vocabulary, we ob-
tain an estimate of zw by taking the mean of
Qβw(zw) = Dir(βw)—i.e., by normalizing βw.
We compare this representation to using βw di-
rectly, because βw contains information about Sen-
tiVAE’s certainty about the word’s latent polar-
ity value. We evaluate our common latent rep-
resentation via a text classification task involving
nine English-language sentiment analysis datasets:
IMDB (Maas et al., 2011), Yelp (Zhang et al.,
2015), SemEval 2017 Task 4 (SemEval, Rosen-
thal et al. (2017)), multi-domain sentiment analysis
(MultiDom, Blitzer et al. (2007)), and PeerRead
(Kang et al., 2018) with splits ACL 2017 and ICLR
2017 (Kang et al., 2018). Each dataset consists of
multiple texts (e.g., tweets, articles), each labeled
with an overall sentiment (e.g., positive). Descrip-
tive statistics for each dataset are shown in Tab. 2.
For the datasets with more than three sentiment la-
bels, we consider two versions—the original and a
version with only three (bucketed) sentiment labels.

For each dataset, we transform each text into an
average polarity value using either our represen-
tation, one of the six lexica,4 or a straightforward
combination thereof, where the polarity value for

4We bucket the upper four and lower four points of
VADER’s nine-point scale, to yield a three-point scale. With-
out this bucketing, our representation outperforms VADER
on four of the nine datasets. We do not bucket VADER when
using it in SentiVAE or in the straightforward combination.

each word in the (combined) vocabulary is a 16-
dimensional vector that consists of a concatenation
of polarity values. (Unlike SentiVAE, this concate-
nation does not yield a single sentiment lexicon
that retains scale coherence, while achieving maxi-
mal coverage over words.) Specifically, we replace
each token with its corresponding polarity value,
and then average the these values (Go et al., 2009;
Özdemir and Bergler, 2015; Kiritchenko et al.,
2014). We then use the training portion of the
dataset to learn a logistic regression classifier to
predict the overall sentiment of each text from its
average polarity value. Finally, we use the testing
portion to compute the accuracy of the classifier.

Results. The results in Tab. 3 show that our rep-
resentation using βw outperforms the individual
lexica for all but one dataset, and that our repre-
sentation using the mean of Qβw(zw) outperforms
them for six datasets. This is likely because Senti-
VAE has a richer representation of sentiment than
any individual lexicon, and it has greater coverage
over words (see Tab. 4). The results in Tab. 5 sup-
port the former reason: even when we limit the
words in our representation to match those in an
individual lexicon, our representation still outper-
forms the individual lexicon. Unsurprisingly, our
representation especially outperforms lexica with
unidimensional scales. We also find that our rep-
resentation outperforms the straightforward com-
bination for datasets from domains that are not
well supported by the individual lexica (see Tabs. 1
and 2 for lexicon and dataset sources, respectively).
By combining lexica from different domains, our
representation captures a general notion of senti-
ment that is not tailored to any specific domain.

5 Conclusion

We introduced a generative model of sentiment
lexica to combine disparate scales into a common
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IMDB SemEval Multi ICLR

SentiVAE 70 64 81 71

SentiWordNet 15 14 24 16
MPQA 10 7 18 9

SenticNet 40 39 53 45
Hu-Liu 7 5 13 5

GI 8 7 15 6
VADER 7 6 13 5

Table 4: Coverage over words (percentage) by lexicon
for the training portions of four of the nine datasets.

IMDB 2C SemEval 3C

SV Lex SV Lex

SentiVAE 74.7 – 72.4 –

SentiWordNet 70.6 63.4 67.4 55.1
MPQA 73.5 66.6 62.6 51.8

SenticNet 74.4 60.9 72.1 59.5
Hu-Liu 73.6 68.4 59.1 51.1

GI 71.4 59.3 63.8 54.0
VADER 73.6 73.1 60.9 58.7

Table 5: Classification accuracies for a 10% validation
portion of two of the datasets. The first row, labeled
SentiVAE, contains the classification accuracy for our
representation using βw. Subsequent (lexicon-specific)
rows compare our representation (SV), restricted to the
vocabulary of that lexicon, to the lexicon itself (Lex).

latent representation, and realized this model with
a novel multi-view variational autoencoder, called
SentiVAE. We then used SentiVAE to combine six
commonly used English-language sentiment lex-
ica with binary, categorical, and continuous scales.
Via a downstream text classification task involving
nine English-language sentiment analysis datasets,
we found that our representation outperforms the
individual lexica, as well as a straightforward com-
bination thereof. We also found that our represen-
tation is particularly efficacious for datasets from
domains that are not well-supported by standard
sentiment lexica. Finally, we note that our approach
is more general than SentiMerge (Emerson and De-
clerck, 2014). While SentiMerge can only combine
sentiment lexica with continuous scales, SentiVAE
is designed to combine lexica with disparate scales.
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