38 research outputs found

    Advancing Dynamic Fault Tree Analysis

    Full text link
    This paper presents a new state space generation approach for dynamic fault trees (DFTs) together with a technique to synthesise failures rates in DFTs. Our state space generation technique aggressively exploits the DFT structure --- detecting symmetries, spurious non-determinism, and don't cares. Benchmarks show a gain of more than two orders of magnitude in terms of state space generation and analysis time. Our approach supports DFTs with symbolic failure rates and is complemented by parameter synthesis. This enables determining the maximal tolerable failure rate of a system component while ensuring that the mean time of failure stays below a threshold

    DFTCalc: reliability centered maintenance via fault tree analysis (tool paper)

    Get PDF
    Reliability, availability, maintenance and safety (RAMS) analysis is essential in the evaluation of safety critical systems like nuclear power plants and the railway infrastructure. A widely used methodology within RAMS analysis are fault trees, representing failure propagations throughout a system. We present DFTCalc, a tool-set to conduct quantitative analysis on dynamic fault trees including the effect of a maintenance strategy on the system dependability

    The quantitative verification benchmark set

    Get PDF
    We present an extensive collection of quantitative models to facilitate the development, comparison, and benchmarking of new verification algorithms and tools. All models have a formal semantics in terms of extensions of Markov chains, are provided in the Jani format, and are documented by a comprehensive set of metadata. The collection is highly diverse: it includes established probabilistic verification and planning benchmarks, industrial case studies, models of biological systems, dynamic fault trees, and Petri net examples, all originally specified in a variety of modelling languages. It archives detailed tool performance data for each model, enabling immediate comparisons between tools and among tool versions over time. The collection is easy to access via a client-side web application at qcomp.org with powerful search and visualisation features. It can be extended via a Git-based submission process, and is openly accessible according to the terms of the CC-BY license

    Qualitative temporal analysis: Towards a full implementation of the Fault Tree Handbook

    Get PDF
    The Fault tree handbook has become the de facto standard for fault tree analysis (FTA), defining the notation and mathematical foundation of this widely used safety analysis technique. The Handbook recognises that classical combinatorial fault trees employing only Boolean gates cannot capture the potentially critical significance of the temporal ordering of failure events in a system. Although the Handbook proposes two dynamic gates that could remedy this, a Priority-AND and an Exclusive-OR gate, these gates were never accurately defined. This paper proposes extensions to the logical foundation of fault trees that enable use of these dynamic gates in an extended and more powerful FTA. The benefits of this approach are demonstrated on a generic triple-module standby redundant system exhibiting dynamic behaviour

    A2THOS: Availability Analysis and Optimisation in SLAs

    Get PDF
    IT service availability is at the core of customer satisfaction and business success for today’s organisations. Many medium-large size organisations outsource part of their IT services to external providers, with Service Level Agreements describing the agreed availability of outsourced service components. Availability management of partially outsourced IT services is a non trivial task since classic approaches for calculating availability are not applicable, and IT managers can only rely on their expertise to fulfil it. This often leads to the adoption of non optimal solutions. In this paper we present A2THOS, a framework to calculate the availability of partially outsourced IT services in the presence of SLAs and to achieve a cost-optimal choice of availability levels for outsourced IT components while guaranteeing a target availability level for the service

    DBNet, a tool to convert Dynamic Fault Trees into Dynamic Bayesian Networks

    Get PDF
    The unreliability evaluation of a system including dependencies involving the state of components or the failure events, can be performed by modelling the system as a Dynamic Fault Tree (DFT). The combinatorial technique used to solve standard Fault Trees is not suitable for the analysis of a DFT. The conversion into a Dynamic Bayesian Network (DBN) is a way to analyze a DFT. This paper presents a software tool allowing the automatic analysis of a DFTexploiting its conversion to a DBN. First, the architecture of the tool is described, together with the rules implemented in the tool, to convert dynamic gates in DBNs. Then, the tool is tested on a case of system: its DFT model and the corresponding DBN are provided and analyzed by means of the tool. The obtained unreliability results are compared with those returned by other tools, in order to verify their correctness. Moreover, the use of DBNs allows to compute further results on the model, such as diagnostic and sensitivity indices

    Modelling and Resolution of Dynamic Reliability Problems by the Coupling of Simulink and the Stochastic Hybrid Fault Tree Object Oriented (SHyFTOO) Library

    Get PDF
    Dependability assessment is one of the most important activities for the analysis of complex systems. Classical analysis techniques of safety, risk, and dependability, like Fault Tree Analysis or Reliability Block Diagrams, are easy to implement, but they estimate inaccurate dependability results due to their simplified hypotheses that assume the components’ malfunctions to be independent from each other and from the system working conditions. Recent contributions within the umbrella of Dynamic Probabilistic Risk Assessment have shown the potential to improve the accuracy of classical dependability analysis methods. Among them, Stochastic Hybrid Fault Tree Automaton (SHyFTA) is a promising methodology because it can combine a Dynamic Fault Tree model with the physics-based deterministic model of a system process, and it can generate dependability metrics along with performance indicators of the physical variables. This paper presents the Stochastic Hybrid Fault Tree Object Oriented (SHyFTOO), a Matlab® software library for the modelling and the resolution of a SHyFTA model. One of the novel features discussed in this contribution is the ease of coupling with a Matlab® Simulink model that facilitates the design of complex system dynamics. To demonstrate the utilization of this software library and the augmented capability of generating further dependability indicators, three di erent case studies are discussed and solved with a thorough description for the implementation of the corresponding SHyFTA models
    corecore