305,702 research outputs found

    Transdisciplinarity seen through Information, Communication, Computation, (Inter-)Action and Cognition

    Full text link
    Similar to oil that acted as a basic raw material and key driving force of industrial society, information acts as a raw material and principal mover of knowledge society in the knowledge production, propagation and application. New developments in information processing and information communication technologies allow increasingly complex and accurate descriptions, representations and models, which are often multi-parameter, multi-perspective, multi-level and multidimensional. This leads to the necessity of collaborative work between different domains with corresponding specialist competences, sciences and research traditions. We present several major transdisciplinary unification projects for information and knowledge, which proceed on the descriptive, logical and the level of generative mechanisms. Parallel process of boundary crossing and transdisciplinary activity is going on in the applied domains. Technological artifacts are becoming increasingly complex and their design is strongly user-centered, which brings in not only the function and various technological qualities but also other aspects including esthetic, user experience, ethics and sustainability with social and environmental dimensions. When integrating knowledge from a variety of fields, with contributions from different groups of stakeholders, numerous challenges are met in establishing common view and common course of action. In this context, information is our environment, and informational ecology determines both epistemology and spaces for action. We present some insights into the current state of the art of transdisciplinary theory and practice of information studies and informatics. We depict different facets of transdisciplinarity as we see it from our different research fields that include information studies, computability, human-computer interaction, multi-operating-systems environments and philosophy.Comment: Chapter in a forthcoming book: Information Studies and the Quest for Transdisciplinarity - Forthcoming book in World Scientific. Mark Burgin and Wolfgang Hofkirchner, Editor

    Establishment of computational biology in Greece and Cyprus: Past, present, and future.

    Get PDF
    We review the establishment of computational biology in Greece and Cyprus from its inception to date and issue recommendations for future development. We compare output to other countries of similar geography, economy, and size—based on publication counts recorded in the literature—and predict future growth based on those counts as well as national priority areas. Our analysis may be pertinent to wider national or regional communities with challenges and opportunities emerging from the rapid expansion of the field and related industries. Our recommendations suggest a 2-fold growth margin for the 2 countries, as a realistic expectation for further expansion of the field and the development of a credible roadmap of national priorities, both in terms of research and infrastructure funding

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Towards a classification framework for social machines

    No full text
    The state of the art in human interaction with computational systems blurs the line between computations performed by machine logic and algorithms, and those that result from input by humans, arising from their own psychological processes and life experience. Current socio-technical systems, known as ‘social machines’ exploit the large-scale interaction of humans with machines. Interactions that are motivated by numerous goals and purposes including financial gain, charitable aid, and simply for fun. In this paper we explore the landscape of social machines, both past and present, with the aim of defining an initial classificatory framework. Through a number of knowledge elicitation and refinement exercises we have identified the polyarchical relationship between infrastructure, social machines, and large-scale social initiatives. Our initial framework describes classification constructs in the areas of contributions, participants, and motivation. We present an initial characterization of some of the most popular social machines, as demonstration of the use of the identified constructs. We believe that it is important to undertake an analysis of the behaviour and phenomenology of social machines, and of their growth and evolution over time. Our future work will seek to elicit additional opinions, classifications and validation from a wider audience, to produce a comprehensive framework for the description, analysis and comparison of social machines

    Improving The Quality Of The Mathematics Education: The Malaysian Experience

    Get PDF
    Improving the quality of teaching and learning of mathematics has always been a major concern of mathematics educators. The four recurring and inter-related issues often raised in the development of a mathematics curriculum are: “What type of mathematics ought to be taught?”, “Why do we need to teach mathematics?”, “How should mathematics curriculum be planned and arranged?” and “ How can teacher ensure that what is transmitted to the pupils is as planned in the curriculum?”.The relatively brief history of mathematics education in Malaysia can be said to have developed in three distinct phases. In the first phase, the traditional approach, which emphasized mainly on basic skills (predominantly computational), was the focus of the national syllabus. In the late 70’s, in consonance with the world-wide educational reform, the modern mathematics program (MMP) was introduced in schools. Understanding of basic concepts rather than attaining computational efficiency was the underlying theme of the syllabus. Finally, in the late 80’s the mathematics curriculum was further revised. It is part of the national educational reform that saw the introduction of the national integrated curriculum (KBSM) both at the primary and secondary levels. This mathematics curriculum, which has undergone several minor changes periodically, is presently implemented in schools. The curriculum also emphasizes on the importance of context in problem solving. These three syllabi, as in any other curricular development, can be seen to have evolved from changing perspectives on the content, psychological and pedagogical considerations in teaching and learning of mathematics. In this paper, I will trace the development of the Malaysian mathematics curriculum from the psychological, content and pedagogical perspectives in relation to the recurring issues. I will argue that the development has in many ways attempted to make mathematics more meaningful and thus friendlier for students both at the primary and secondary levels. There has been also a marked improvement on the quality of mathematics education in Malaysi
    corecore