7 research outputs found

    An Exact Algorithm for the Shortest Path Problem With Position-Based Learning Effects

    Full text link
    [EN] The shortest path problems (SPPs) with learning effects (SPLEs) have many potential and interesting applications. However, at the same time they are very complex and have not been studied much in the literature. In this paper, we show that learning effects make SPLEs completely different from SPPs. An adapted A* (AA*) is proposed for the SPLE problem under study. Though global optimality implies local optimality in SPPs, it is not the case for SPLEs. As all subpaths of potential shortest solution paths need to be stored during the search process, a search graph is adopted by AA* rather than a search tree used by A*. Admissibility of AA* is proven. Monotonicity and consistency of the heuristic functions of AA* are redefined and the corresponding properties are analyzed. Consistency/monotonicity relationships between the heuristic functions of AA* and those of A* are explored. Their impacts on efficiency of searching procedures are theoretically analyzed and experimentally evaluated.This work was supported in part by the National Natural Science Foundation of China under Grant 61572127 and Grant 61272377, and in part by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant 20120092110027. The work of R. Ruiz was supported in part by the Spanish Ministry of Economy and Competitiveness under Project "RESULT-Realistic Extended Scheduling Using Light Techniques" under Grant DPI2012-36243-C02-01, and in part by the FEDER.Wang, Y.; Li, X.; Ruiz García, R. (2017). An Exact Algorithm for the Shortest Path Problem With Position-Based Learning Effects. IEEE Transactions on Systems Man and Cybernetics - Part A Systems and Humans. 47(11):3037-3049. https://doi.org/10.1109/TSMC.2016.2560418S30373049471

    Novel algorithm for mobile robot path planning in constrained environment

    Get PDF
    This paper presents a development of a novel path planning algorithm, called Generalized Laser simulator (GLS), for solving the mobile robot path planning problem in a two-dimensional map with the presence of constraints. This approach gives the possibility to find the path for a wheel mobile robot considering some constraints during the robot movement in both known and unknown environments. The feasible path is determined between the start and goal positions by generating wave of points in all direction towards the goal point with adhering to constraints. In simulation, the proposed method has been tested in several working environments with different degrees of complexity. The results demonstrated that the proposed method is able to generate efficiently an optimal collision-free path. Moreover, the performance of the proposed method was compared with the A-star and laser simulator (LS) algorithms in terms of path length, computational time and path smoothness. The results revealed that the proposed method has shortest path length, less computational time and the best smooth path. As an average, GLS is faster than A∗ and LS by 7.8 and 5.5 times, respectively and presents a path shorter than A∗ and LS by 1.2 and 1.5 times. In order to verify the performance of the developed method in dealing with constraints, an experimental study was carried out using a Wheeled Mobile Robot (WMR) platform in labs and roads. The experimental work investigates a complete autonomous WMR path planning in the lab and road environments using a live video streaming. Local maps were built using data from a live video streaming with real-time image processing to detect segments of the analogous-road in lab or real-road environments. The study shows that the proposed method is able to generate shortest path and best smooth trajectory from start to goal points in comparison with laser simulator

    A generalized laser simulator algorithm for optimal path planning in constraints environment

    Get PDF
    Path planning plays a vital role in autonomous mobile robot navigation, and it has thus become one of the most studied areas in robotics. Path planning refers to a robot's search for a collision-free and optimal path from a start point to a predefined goal position in a given environment. This research focuses on developing a novel path planning algorithm, called Generalized Laser Simulator (GLS), to solve the path planning problem of mobile robots in a constrained environment. This approach allows finding the path for a mobile robot while avoiding obstacles, searching for a goal, considering some constraints and finding an optimal path during the robot movement in both known and unknown environments. The feasible path is determined between the start and goal positions by generating a wave of points in all directions towards the goal point with adhering to constraints. A simulation study employing the proposed approach is applied to the grid map settings to determine a collision-free path from the start to goal positions. First, the grid mapping of the robot's workspace environment is constructed, and then the borders of the workspace environment are detected based on the new proposed function. This function guides the robot to move toward the desired goal. Two concepts have been implemented to find the best candidate point to move next: minimum distance to goal and maximum index distance to the boundary, integrated by negative probability to sort out the most preferred point for the robot trajectory determination. In order to construct an optimal collision-free path, an optimization step was included to find out the minimum distance within the candidate points that have been determined by GLS while adhering to particular constraint's rules and avoiding obstacles. The proposed algorithm will switch its working pattern based on the goal minimum and boundary maximum index distances. For static obstacle avoidance, the boundaries of the obstacle(s) are considered borders of the environment. However, the algorithm detects obstacles as a new border in dynamic obstacles once it occurs in front of the GLS waves. The proposed method has been tested in several test environments with different degrees of complexity. Twenty different arbitrary environments are categorized into four: Simple, complex, narrow, and maze, with five test environments in each. The results demonstrated that the proposed method could generate an optimal collision-free path. Moreover, the proposed algorithm result are compared to some common algorithms such as the A* algorithm, Probabilistic Road Map, RRT, Bi-directional RRT, and Laser Simulator algorithm to demonstrate its effectiveness. The suggested algorithm outperforms the competition in terms of improving path cost, smoothness, and search time. A statistical test was used to demonstrate the efficiency of the proposed algorithm over the compared methods. The GLS is 7.8 and 5.5 times faster than A* and LS, respectively, generating a path 1.2 and 1.5 times shorter than A* and LS. The mean value of the path cost achieved by the proposed approach is 4% and 15% lower than PRM and RRT, respectively. The mean path cost generated by the LS algorithm, on the other hand, is 14% higher than that generated by the PRM. Finally, to verify the performance of the developed method for generating a collision-free path, experimental studies were carried out using an existing WMR platform in labs and roads. The experimental work investigates complete autonomous WMR path planning in the lab and road environments using live video streaming. The local maps were built using data from live video streaming s by real-time image processing to detect the segments of the lab and road environments. The image processing includes several operations to apply GLS on the prepared local map. The proposed algorithm generates the path within the prepared local map to find the path between start-to-goal positions to avoid obstacles and adhere to constraints. The experimental test shows that the proposed method can generate the shortest path and best smooth trajectory from start to goal points in comparison with the laser simulator

    The Fringe-Saving A * Search Algorithm- A Feasibility Study

    No full text
    In this paper, we develop Fringe-Saving A* (FSA*), an incremental version of A * that repeatedly finds shortest paths in a known gridworld from a given start cell to a given goal cell while the traversability costs of cells increase or decrease. The first search of FSA * is the same as that of A*. However, FSA * is able to find shortest paths during the subsequent searches faster than A * because it reuses the beginning of the immediately preceeding A * search tree that is identical to the current A* search tree. FSA * does this by restoring the content of the OPEN list of A * at the point in time when an A * search for the current search problem could deviate from the A * search for the immediately preceeding search problem. We present first experimental results that demonstrate that FSA * can have a runtime advantage over A * and Lifelong Planning A * (LPA*), an alternative incremental version of A*.
    corecore