2,147 research outputs found

    Are voters rational?

    Get PDF
    We test whether a voter’s decision to cast a vote depends on its probability of affecting the election outcome. Using exogenous variation arising at population cutoffs determining council sizes in Finnish municipal elections, we show that larger council size increases both pivotal probabilities and turnout. These effects are statistically significant, fairly large and robust. Finally, we use a novel instrumental variables design to show that the jumps in the pivotal probabilities are the likely candidate for explaining the increase in turnout, rather than the other observed simultaneous jumps at the council size cutoffs. Moreover, our results indicate that turnout responds only to within-party pivotal probabilities, perhaps because they are more salient to the voters than the between-party ones

    A PRG for Lipschitz Functions of Polynomials with Applications to Sparsest Cut

    Full text link
    We give improved pseudorandom generators (PRGs) for Lipschitz functions of low-degree polynomials over the hypercube. These are functions of the form psi(P(x)), where P is a low-degree polynomial and psi is a function with small Lipschitz constant. PRGs for smooth functions of low-degree polynomials have received a lot of attention recently and play an important role in constructing PRGs for the natural class of polynomial threshold functions. In spite of the recent progress, no nontrivial PRGs were known for fooling Lipschitz functions of degree O(log n) polynomials even for constant error rate. In this work, we give the first such generator obtaining a seed-length of (log n)\tilde{O}(d^2/eps^2) for fooling degree d polynomials with error eps. Previous generators had an exponential dependence on the degree. We use our PRG to get better integrality gap instances for sparsest cut, a fundamental problem in graph theory with many applications in graph optimization. We give an instance of uniform sparsest cut for which a powerful semi-definite relaxation (SDP) first introduced by Goemans and Linial and studied in the seminal work of Arora, Rao and Vazirani has an integrality gap of exp(\Omega((log log n)^{1/2})). Understanding the performance of the Goemans-Linial SDP for uniform sparsest cut is an important open problem in approximation algorithms and metric embeddings and our work gives a near-exponential improvement over previous lower bounds which achieved a gap of \Omega(log log n)

    Polynomials that Sign Represent Parity and Descartes' Rule of Signs

    Full text link
    A real polynomial P(X1,...,Xn)P(X_1,..., X_n) sign represents f:An{0,1}f: A^n \to \{0,1\} if for every (a1,...,an)An(a_1, ..., a_n) \in A^n, the sign of P(a1,...,an)P(a_1,...,a_n) equals (1)f(a1,...,an)(-1)^{f(a_1,...,a_n)}. Such sign representations are well-studied in computer science and have applications to computational complexity and computational learning theory. In this work, we present a systematic study of tradeoffs between degree and sparsity of sign representations through the lens of the parity function. We attempt to prove bounds that hold for any choice of set AA. We show that sign representing parity over {0,...,m1}n\{0,...,m-1\}^n with the degree in each variable at most m1m-1 requires sparsity at least mnm^n. We show that a tradeoff exists between sparsity and degree, by exhibiting a sign representation that has higher degree but lower sparsity. We show a lower bound of n(m2)+1n(m -2) + 1 on the sparsity of polynomials of any degree representing parity over {0,...,m1}n\{0,..., m-1\}^n. We prove exact bounds on the sparsity of such polynomials for any two element subset AA. The main tool used is Descartes' Rule of Signs, a classical result in algebra, relating the sparsity of a polynomial to its number of real roots. As an application, we use bounds on sparsity to derive circuit lower bounds for depth-two AND-OR-NOT circuits with a Threshold Gate at the top. We use this to give a simple proof that such circuits need size 1.5n1.5^n to compute parity, which improves the previous bound of 4/3n/2{4/3}^{n/2} due to Goldmann (1997). We show a tight lower bound of 2n2^n for the inner product function over {0,1}n×{0,1}n\{0,1\}^n \times \{0, 1\}^n.Comment: To appear in Computational Complexit

    Social Identity and Voter Turnout

    Get PDF
    This paper uses the unique social structure of Arab communities to examine the effect of social identity on voter turnout. We first show that voters are more likely to vote for a candidate who shares their social group (signified by last name) as compared to other candidates. Using last name as a measure of group affiliation, we find an inverted U-shaped relationship between group size and voter turnout which is consistent with theoretical models that reconcile the paradox of voting by incorporating groups behavior.voter turnout, paradox of voting, social identity, local elections

    The intersection of two halfspaces has high threshold degree

    Full text link
    The threshold degree of a Boolean function f:{0,1}^n->{-1,+1} is the least degree of a real polynomial p such that f(x)=sgn p(x). We construct two halfspaces on {0,1}^n whose intersection has threshold degree Theta(sqrt n), an exponential improvement on previous lower bounds. This solves an open problem due to Klivans (2002) and rules out the use of perceptron-based techniques for PAC learning the intersection of two halfspaces, a central unresolved challenge in computational learning. We also prove that the intersection of two majority functions has threshold degree Omega(log n), which is tight and settles a conjecture of O'Donnell and Servedio (2003). Our proof consists of two parts. First, we show that for any nonconstant Boolean functions f and g, the intersection f(x)^g(y) has threshold degree O(d) if and only if ||f-F||_infty + ||g-G||_infty < 1 for some rational functions F, G of degree O(d). Second, we settle the least degree required for approximating a halfspace and a majority function to any given accuracy by rational functions. Our technique further allows us to make progress on Aaronson's challenge (2008) and contribute strong direct product theorems for polynomial representations of composed Boolean functions of the form F(f_1,...,f_n). In particular, we give an improved lower bound on the approximate degree of the AND-OR tree.Comment: Full version of the FOCS'09 pape

    A Tale of two Countries

    Get PDF
    corecore