16 research outputs found

    On The Exact Recovery Condition of Simultaneous Orthogonal Matching Pursuit

    Full text link

    Support Recovery of Greedy Block Coordinate Descent Using the Near Orthogonality Property

    Get PDF
    In this paper, using the near orthogonal property, we analyze the performance of greedy block coordinate descent (GBCD) algorithm when both the measurements and the measurement matrix are perturbed by some errors. An improved sufficient condition is presented to guarantee that the support of the sparse matrix is recovered exactly. A counterexample is provided to show that GBCD fails. It improves the existing result. By experiments, we also point out that GBCD is robust under these perturbations

    Relaxed Recovery Conditions for OMP/OLS by Exploiting both Coherence and Decay

    Full text link
    We propose extended coherence-based conditions for exact sparse support recovery using orthogonal matching pursuit (OMP) and orthogonal least squares (OLS). Unlike standard uniform guarantees, we embed some information about the decay of the sparse vector coefficients in our conditions. As a result, the standard condition μ<1/(2k1)\mu<1/(2k-1) (where μ\mu denotes the mutual coherence and kk the sparsity level) can be weakened as soon as the non-zero coefficients obey some decay, both in the noiseless and the bounded-noise scenarios. Furthermore, the resulting condition is approaching μ<1/k\mu<1/k for strongly decaying sparse signals. Finally, in the noiseless setting, we prove that the proposed conditions, in particular the bound μ<1/k\mu<1/k, are the tightest achievable guarantees based on mutual coherence
    corecore