7,349 research outputs found

    An overview of very high level software design methods

    Get PDF
    Very High Level design methods emphasize automatic transfer of requirements to formal design specifications, and/or may concentrate on automatic transformation of formal design specifications that include some semantic information of the system into machine executable form. Very high level design methods range from general domain independent methods to approaches implementable for specific applications or domains. Applying AI techniques, abstract programming methods, domain heuristics, software engineering tools, library-based programming and other methods different approaches for higher level software design are being developed. Though one finds that a given approach does not always fall exactly in any specific class, this paper provides a classification for very high level design methods including examples for each class. These methods are analyzed and compared based on their basic approaches, strengths and feasibility for future expansion toward automatic development of software systems

    Guide to Good Practice in using Open Source Compilers with the AGCC Lexical Analyzer

    Get PDF
    Quality software always demands a compromise between users' needs and hardware resources. To be faster means expensive devices like powerful processors and virtually unlimited amounts of RAM memory. Or you just need reengineering of the code in terms of adapting that piece of software to the client's hardware architecture. This is the purpose of optimizing code in order to get the utmost software performance from a program in certain given conditions. There are tools for designing and writing the code but the ultimate tool for optimizing remains the modest compiler, this often neglected software jewel the result of hundreds working hours by the best specialists in the world. Even though, only two compilers fulfill the needs of professional developers, a proprietary solution from a giant in the IT industry, and the Open source GNU compiler, for which we develop the AGCC lexical analyzer that helps producing even more efficient software applications. It relies on the most popular hacks and tricks used by professionals and discovered by the author who are proud to present them further below.registers, dynamic linkage, cache, null pointers, tweaking

    Programming Language Feature Agglomeration

    Get PDF
    Feature-creep is a well-known phenomenon in software systems. In this paper, we argue that feature-creep also occurs in the domain of programming languages. Recent languages are more expressive than earlier languages. However recent languages generally extend rather than replace the syntax (sometimes) and semantics (almost always) of earlier languages. We demonstrate this trend of agglomeration in a sequence of languages comprising Pascal, C, Java, and Scala. These are all block-structured Algol-derived languages, with earlier languages providing explicit inspiration for later ones. We present empirical evidence from several language-specific sources, including grammar definitions and canonical manuals. The evidence suggests that there is a trend of increasing complexity in modern languages that have evolved from earlier languages

    Proceedings of the 3rd Workshop on Domain-Specific Language Design and Implementation (DSLDI 2015)

    Full text link
    The goal of the DSLDI workshop is to bring together researchers and practitioners interested in sharing ideas on how DSLs should be designed, implemented, supported by tools, and applied in realistic application contexts. We are both interested in discovering how already known domains such as graph processing or machine learning can be best supported by DSLs, but also in exploring new domains that could be targeted by DSLs. More generally, we are interested in building a community that can drive forward the development of modern DSLs. These informal post-proceedings contain the submitted talk abstracts to the 3rd DSLDI workshop (DSLDI'15), and a summary of the panel discussion on Language Composition

    Development of a client interface for a methodology independent object-oriented CASE tool : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University

    Get PDF
    The overall aim of the research presented in this thesis is the development of a prototype CASE Tool user interface that supports the use of arbitrary methodology notations for the construction of small-scale diagrams. This research is part of the larger CASE Tool project, MOOT (Massey's Object Oriented Tool). MOOT is a meta-system with a client-server architecture that provides a framework within which the semantics and syntax of methodologies can be described. The CASE Tool user interface is implemented in Java so it is as portable as possible and has a consistent look and feel. It has been designed as a client to the rest of the MOOT system (which acts as a server). A communications protocol has been designed to support the interaction between the CASE Tool client and a MOOT server. The user interface design of MOOT must support all possible graphical notations. No assumptions about the types of notations that a software engineer may use can be made. MOOT therefore provides a specification language called NDL for the definition of a methodology's syntax. Hence, the MOOT CASE Tool client described in this thesis is a shell that is parameterised by NDL specifications. The flexibility provided by such a high level of abstraction presents significant challenges in terms of designing effective human-computer interaction mechanisms for the MOOT user interface. Functional and non-functional requirements of the client user interface have been identified and applied during the construction of the prototype. A notation specification that defines the syntax for Coad and Yourdon OOA/OOD has been written in NDL and used as a test case. The thesis includes the iterative evaluation and extension of NDL resulting from the prototype development. The prototype has shown that the current approach to NDL is efficacious, and that the syntax and semantics of a methodology description can successfully be separated. The developed prototype has shown that it is possible to build a simple, non-intrusive, and efficient, yet flexible, useable, and helpful interface for meta-CASE tools. The development of the CASE Tool client, through its generic, methodology independent design, has provided a pilot with which future ideas may be explored
    corecore