618,905 research outputs found

    Quantum entanglement in random physical states

    Full text link
    Most states in the Hilbert space are maximally entangled. This fact has proven useful to investigate - among other things - the foundations of statistical mechanics. Unfortunately, most states in the Hilbert space of a quantum many body system are not physically accessible. We define physical ensembles of states by acting on random factorized states by a circuit of length k of random and independent unitaries with local support. We study the typicality of entanglement by means of the purity of the reduced state. We find that for a time k=O(1) the typical purity obeys the area law. Thus, the upper bounds for area law are actually saturated {\em in average}, with a variance that goes to zero for large systems. Similarly, we prove that by means of local evolution a subsystem of linear dimensions LL is typically entangled with a volume law when the time scales with the size of the subsystem. Moreover, we show that for large values of k the reduced state becomes very close to the completely mixed state.Comment: updated to published version, typos correcte

    Methods, Models, and the Evolution of Moral Psychology

    Get PDF
    Why are we good? Why are we bad? Questions regarding the evolution of morality have spurred an astoundingly large interdisciplinary literature. Some significant subset of this body of work addresses questions regarding our moral psychology: how did humans evolve the psychological properties which underpin our systems of ethics and morality? Here I do three things. First, I discuss some methodological issues, and defend particularly effective methods for addressing many research questions in this area. Second, I give an in-depth example, describing how an explanation can be given for the evolution of guilt---one of the core moral emotions---using the methods advocated here. Last, I lay out which sorts of strategic scenarios generally are the ones that our moral psychology evolved to `solve', and thus which models are the most useful in further exploring this evolution

    Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter

    Get PDF
    The acquisition of new global elevation data from the Lunar Orbiter Laser Altimeter, carried on the Lunar Reconnaissance Orbiter, permits quantification of the surface roughness properties of the Moon at unprecedented scales and resolution. We map lunar surface roughness using a range of parameters: median absolute slope, both directional (along-track) and bidirectional (in two dimensions); median differential slope; and Hurst exponent, over baselines ranging from ~17 m to ~2.7 km. We find that the lunar highlands and the mare plains show vastly different roughness properties, with subtler variations within mare and highlands. Most of the surface exhibits fractal-like behavior, with a single or two different Hurst exponents over the given baseline range; when a transition exists, it typically occurs near the 1 km baseline, indicating a significant characteristic spatial scale for competing surface processes. The Hurst exponent is high within the lunar highlands, with a median value of 0.95, and lower in the maria (with a median value of 0.76). The median differential slope is a powerful tool for discriminating between roughness units and is useful in characterizing, among other things, the ejecta surrounding large basins, particularly Orientale, as well as the ray systems surrounding young, Copernican-age craters. In addition, it allows a quantitative exploration on mare surfaces of the evolution of surface roughness with age

    Las instituciones como factor que regula el desempeño económico

    Get PDF
    There has recently been a resurgence of interest in how institutions affect economic performance. A review of this literature reveals that the concept of an ‘institution’ means different things to different scholars, both within economics and across the social sciences. This paper discusses what factors unify the different definitions of institutions, and develops a concept of institutions useful for the analysis of economic performance, and economic growth in particular. Specifically, it develops the notion of institutions as standard ‘social technologies’. Economic growth results from the co-evolution of physical and social technologies.institutions, economic growth, rutines, social technologies, physical technologies

    A Review of The Mandible

    Get PDF
    A Review of The Mandible by Emily Hill The mandible is one of the 22 bones in the human skull. This paper aims to encapsulate the basic features of the human mandible while also addressing the evolution and morphological mandibular variation between mammals. It also aims to address the role that anthropology and all its sub-disciplines has played in the exploitation and erasure of Indigenous peoples. There must be a significant push to decolonize the field of osteology. The mandible is useful for forensic applications such as post-mortem identification. In a rapidly expanding technological world, new ways of studying the mandible are continuously improving which gives researchers the ability to do things which were previously thought as impossible

    Tracing cosmic evolution with clusters of galaxies

    Full text link
    The most successful cosmological models to date envision structure formation as a hierarchical process in which gravity is constantly drawing lumps of matter together to form increasingly larger structures. Clusters of galaxies currently sit atop this hierarchy as the largest objects that have had time to collapse under the influence of their own gravity. Thus, their appearance on the cosmic scene is also relatively recent. Two features of clusters make them uniquely useful tracers of cosmic evolution. First, clusters are the biggest things whose masses we can reliably measure because they are the largest objects to have undergone gravitational relaxation and entered into virial equilibrium. Mass measurements of nearby clusters can therefore be used to determine the amount of structure in the universe on scales of 10^14 to 10^15 solar masses, and comparisons of the present-day cluster mass distribution with the mass distribution at earlier times can be used to measure the rate of structure formation, placing important constraints on cosmological models. Second, clusters are essentially ``closed boxes'' that retain all their gaseous matter, despite the enormous energy input associated with supernovae and active galactic nuclei, because the gravitational potential wells of clusters are so deep. The baryonic component of clusters therefore contains a wealth of information about the processes associated with galaxy formation, including the efficiency with which baryons are converted into stars and the effects of the resulting feedback processes on galaxy formation. This article reviews our theoretical understanding of both the dark-matter component and the baryonic component of clusters. (Abridged)Comment: 54 pages, 15 figures, Rev. Mod. Phys. (in press

    Triadic Motifs in the Partitioned World Trade Web

    Get PDF
    AbstractOne of the crucial aspects of the Internet of Things that influences the effectiveness of communication among devices is the communication model, for which no universal solution exists. The actual interaction pattern can in general be represented as a directed graph, whose nodes represent the "Things" and whose directed edges represent the sent messages. Frequent patterns can identify channels or infrastructures to be strengthened and can help in choosing the most suitable message routing schema or network protocol. In general, frequent patterns have been called motifs and overrepresented motifs have been recognized to be the low-level building blocks of networks and to be useful to explain many of their properties, playing a relevant role in determining their dynamic and evolution. In this paper triadic motifs are found first partitioning a network by strength of connections and then analyzing the partitions separately. The case study is the World Trade Web (WTW), that is the directed graph connecting world Countries with trade relationships, with the aim of finding its topological characterization in terms of motifs and isolating the key factors underlying its evolution. The WTW has been split based on the weights of the graph to highlight structural differences between the big players in terms of volumes of trade and the rest of the world. As test case, the period 2003-2010 has been analyzed, to show the structural effect of the economical crisis in the year 2007
    • 

    corecore