5,215 research outputs found

    Cellular Automata as a Model of Physical Systems

    Full text link
    Cellular Automata (CA), as they are presented in the literature, are abstract mathematical models of computation. In this pa- per we present an alternate approach: using the CA as a model or theory of physical systems and devices. While this approach abstracts away all details of the underlying physical system, it remains faithful to the fact that there is an underlying physical reality which it describes. This imposes certain restrictions on the types of computations a CA can physically carry out, and the resources it needs to do so. In this paper we explore these and other consequences of our reformalization.Comment: To appear in the Proceedings of AUTOMATA 200

    Quantum Cellular Automata

    Full text link
    Quantum cellular automata (QCA) are reviewed, including early and more recent proposals. QCA are a generalization of (classical) cellular automata (CA) and in particular of reversible CA. The latter are reviewed shortly. An overview is given over early attempts by various authors to define one-dimensional QCA. These turned out to have serious shortcomings which are discussed as well. Various proposals subsequently put forward by a number of authors for a general definition of one- and higher-dimensional QCA are reviewed and their properties such as universality and reversibility are discussed.Comment: 12 pages, 3 figures. To appear in the Springer Encyclopedia of Complexity and Systems Scienc

    The application of cellular automata to weather radar

    Get PDF
    A possible cellular automaton approach to weather (and in particular rainfall) modelling is considered. After posing a paradigm problem in a manner reminiscent of a numerical PDE solver and showing that the general approach appears to be valid, we consider some more detailed modelling and comment on how this could be used to construct a genuine finite-state cellular automaton

    Identification of probabilistic cellular automata

    Get PDF
    The identification of probabilistic cellular automata (PCA) is studied using a new two stage neighborhood detection algorithm. It is shown that a binary probabilistic cellular automaton (BPCA) can be described by an integer-parameterized polynomial corrupted by noise. Searching for the correct neighborhood of a BPCA is then equivalent to selecting the correct terms which constitute the polynomial model of the BPCA, from a large initial term set. It is proved that the contribution values for the correct terms can be calculated independently of the contribution values for the noise terms. This allows the neighborhood detection technique developed for deterministic rules in to be applied with a larger cutoff value to discard the majority of spurious terms and to produce an initial presearch for the BPCA neighborhood. A multiobjective genetic algorithm (GA) search with integer constraints is then evolved to refine the reduced neighborhood and to identify the polynomial rule which is equivalent to the probabilistic rule with the largest probability. A probability table representing the BPCA can then be determined based on the identified neighborhood and the deterministic rule. The new algorithm is tested over a large set of one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) BPCA rules. Simulation results demonstrate the efficiency of the new method
    • …
    corecore