470 research outputs found

    Convergence of the Crank-Nicolson-Galerkin finite element method for a class of nonlocal parabolic systems with moving boundaries

    Get PDF
    The aim of this paper is to establish the convergence and error bounds to the fully discrete solution for a class of nonlinear systems of reaction-diffusion nonlocal type with moving boundaries, using a linearized Crank-Nicolson-Galerkin finite element method with polynomial approximations of any degree. A coordinate transformation which fixes the boundaries is used. Some numerical tests to compare our Matlab code with some existing moving finite elements methods are investigated

    On a nonlocal degenerate parabolic problem

    Get PDF
    Conditions for the existence and uniqueness of weak solutions for a class of nonlinear nonlocal degenerate parabolic equations are established. The asymptotic behaviour of the solutions as time tends to infinity are also studied. In particular, the finite time extinction and polynomial decay properties are proved

    A Virtual Element Method for a Nonlocal FitzHugh-Nagumo Model of Cardiac Electrophysiology

    Full text link
    We present a Virtual Element Method (VEM) for a nonlocal reaction-diffusion system of the cardiac electric field. To this system, we analyze an H1(Ω)H^1(\Omega)-conforming discretization by means of VEM which can make use of general polygonal meshes. Under standard assumptions on the computational domain, we establish the convergence of the discrete solution by considering a series of a priori estimates and by using a general LpL^p compactness criterion. Moreover, we obtain optimal order space-time error estimates in the L2L^2 norm. Finally, we report some numerical tests supporting the theoretical results
    corecore