1,145 research outputs found

    Modeling Investments in County and Local Roads to Support Agricultural Logistics

    Get PDF
    Investments in local roads in North Dakota to support agricultural logistics are estimated with a detailed model that predicts flows from 1,406 crop-producing zones to 317 elevators and plants, and forecasts improvements and maintenance costs for paved and unpaved roads. The study finds that (1) the average farm-to-market trip distance has increased from 12 miles in 1980 to 26 miles in 2009, (2) the estimated resurfacing cost per mile for agricultural distribution routes is 40% greater than for non-agricultural routes, and (3) the estimated cost to maintain acceptable service levels on county and local roads is roughly double historical funding levels

    An economic analysis of alternative rail-based grain distribution systems

    Get PDF

    Elevator Trip Distribution for Inconsistent Passenger Input-Output Data

    Get PDF
    Accurate traffic data are the basis for group control of elevators and its performance evaluation by trace driven simulation. The present practice estimates a time series of inter-floor passenger traffic based on commonly available elevator sensor data. The method demands that the sensor data be transformed into sets of passenger input-output data which are consistent in the sense that the transportation preserves the number of passengers. Since observation involves various behavioral assumptions, which may actually be violated, as well as measurement errors, it has been necessary to apply data adjustment procedures to secure the consistency. This paper proposes an alternative algorithm which reconstructs elevator passenger origin-destination tables from inconsistent passenger input-output data sets, thus eliminating the ad hoc data adjustment

    Comprehensive Statewide Transportation Model: Multimodal Investment Analysis Methodology Phase II, CTRE Project 02-126, 2001

    Get PDF
    The purposes of this report (Phase II of the project) are to specify in mathematical form the individual modules of the conceptual model developed in Phase I, to identify and evaluate sources of data for the model set, and to develop the transport networks necessary to support the models

    Container Handling Algorithms and Outbound Heavy Truck Movement Modeling for Seaport Container Transshipment Terminals

    Get PDF
    This research is divided into four main parts. The first part considers the basic block relocation problem (BRP) in which a set of shipping containers is retrieved using the minimum number of moves by a single gantry crane that handles cargo in the storage area in a container terminal. For this purpose a new algorithm called the look ahead algorithm has been created and tested. The look ahead algorithm is applicable under limited and unlimited stacking height conditions. The look ahead algorithm is compared to the existing algorithms in the literature. The experimental results show that the look ahead algorithm is more efficient than any other algorithm in the literature. The second part of this research considers an extension of the BRP called the block relocation problem with weights (BRP-W). The main goal is to minimize the total fuel consumption of the crane to retrieve all the containers in a bay and to minimize the movements of the heavy containers. The trolleying, hoisting, and lowering movements of the containers are explicitly considered in this part. The twelve parameters to quantify various preferences when moving individual containers are defined. Near-optimal values of the twelve parameters for different bay configurations are found using a genetic algorithm. The third part introduces a shipping cost model that can estimate the cost of shipping specific commodity groups using one freight transportation mode-trucking- from any origin to any destination inside the United States. The model can also be used to estimate general shipping costs for different economic sectors, with significant ramifications for public policy. The last part mimics heavy truck movements for shipping different kinds of containerized commodities between a container terminal and different facilities. The highly detailed cost model from part three is used to evaluate the effect of public policies on truckers\u27 route choices. In particular, the influence of time, distance, and tolls on truckers\u27 route selection is investigated.

    Derived Demand for Grain Freight Transportation, Rail-Truck Competition, and Mode Choice and Allocative Efficiency

    Get PDF
    The demand for grain freight transportation is a derived demand; consequently changes in the grain supply chain in production and handling, and those in the transportation domain will affect the demand for grain transportation. The U.S. transportation industry (e.g. railroad and trucking), and the grain supply chain in general have witnessed structural changes over the years that have potential long-run implications for demand, intermodal competition, and grain shippers mode choices both nationally and regionally. Deregulation of the railroad and trucking industries initiated innovations (e.g. shuttle trains) that have revolutionized the way grain is marketed. These and other related trends in agriculture including bioenergy suggest a dynamic environment surrounding grain transportation and the need to revisit agricultural transportation demand and evaluate changes over time. A majority of freight demand studies are based on aggregate data (e.g. regional) due to lack of disaggregate data. Aggregation of shippers over large geographic regions leads to loss of information with potential erroneous elasticity estimates. This study develops a method to estimate transportation rates at the grain elevator level to estimate a shipper link specific cost function for barley, corn, durum, hard red spring wheat, and soybeans shippers. The aim of this study is to assess and characterize the nature of rail-truck competition for the transportation of five commodities over distance and time as well as to assess whether North Dakota grain shippers’ mode choices reflect an allocatively efficient mix assuming the choice of mode is based on shipping rates. Our findings indicate that in general, rail dominates most of the grain traffic, however, the degree of dominance is variable by commodity. Additional findings suggest that grain shippers utilize more rail than they would if they chose modes based on rates. This may suggest unmeasured service quality advantages of rail in comparison to truck.Upper Great Plains Transportation Institute (UGPTI)Upper Great Plains Transportation Institute (UGPTI
    corecore