3 research outputs found

    The Effects of Peer Communication with Diagrams on Students’ Math Word Problem Solving Processes and Outcomes

    No full text
    This study investigated how providing students with opportunities to use diagrams in interactive communication with peers might affect their diagram use and problem solving processes. The participants were 42 junior high school students who were assigned to a condition with peer instruction opportunities (experimental) or without (control). The peer instruction opportunities were designed to facilitate students ’ diagram use in communication. The results revealed that, in post-instruction assessments, the experimental participants spontaneously used more diagrams and were more successful in problem solving. No differences were found in the timing with which participants started using diagrams. However, the experimental participants used more appropriate types of diagrams that also incorporated more relevant information. The findings therefore indicate that opportunities for peer communication with diagrams facilitate not only enhanced spontaneity in diagram use but also the construction of more appropriate, detailed diagrams, and these in turn likely contribute to better problem solving performance outcomes

    Maximizing the Benefits of Collaborative Learning in the College Classroom

    Get PDF
    abstract: This study tested the effects of two kinds of cognitive, domain-based preparation tasks on learning outcomes after engaging in a collaborative activity with a partner. The collaborative learning method of interest was termed "preparing-to-interact," and is supported in theory by the Preparation for Future Learning (PFL) paradigm and the Interactive-Constructive-Active-Passive (ICAP) framework. The current work combined these two cognitive-based approaches to design collaborative learning activities that can serve as alternatives to existing methods, which carry limitations and challenges. The "preparing-to-interact" method avoids the need for training students in specific collaboration skills or guiding/scripting their dialogic behaviors, while providing the opportunity for students to acquire the necessary prior knowledge for maximizing their discussions towards learning. The study used a 2x2 experimental design, investigating the factors of Preparation (No Prep and Prep) and Type of Activity (Active and Constructive) on deep and shallow learning. The sample was community college students in introductory psychology classes; the domain tested was "memory," in particular, concepts related to the process of remembering/forgetting information. Results showed that Preparation was a significant factor affecting deep learning, while shallow learning was not affected differently by the interventions. Essentially, equalizing time-on-task and content across all conditions, time spent individually preparing by working on the task alone and then discussing the content with a partner produced deeper learning than engaging in the task jointly for the duration of the learning period. Type of Task was not a significant factor in learning outcomes, however, exploratory analyses showed evidence of Constructive-type behaviors leading to deeper learning of the content. Additionally, a novel method of multilevel analysis (MLA) was used to examine the data to account for the dependency between partners within dyads. This work showed that "preparing-to-interact" is a way to maximize the benefits of collaborative learning. When students are first cognitively prepared, they seem to make the most efficient use of discussion towards learning, engage more deeply in the content during learning, leading to deeper knowledge of the content. Additionally, in using MLA to account for subject nonindependency, this work introduces new questions about the validity of statistical analyses for dyadic data.Dissertation/ThesisPh.D. Educational Psychology 201

    Multimedia Development of English Vocabulary Learning in Primary School

    Get PDF
    In this paper, we describe a prototype of web-based intelligent handwriting education system for autonomous learning of Bengali characters. Bengali language is used by more than 211 million people of India and Bangladesh. Due to the socio-economical limitation, all of the population does not have the chance to go to school. This research project was aimed to develop an intelligent Bengali handwriting education system. As an intelligent tutor, the system can automatically check the handwriting errors, such as stroke production errors, stroke sequence errors, stroke relationship errors and immediately provide a feedback to the students to correct themselves. Our proposed system can be accessed from smartphone or iPhone that allows students to do practice their Bengali handwriting at anytime and anywhere. Bengali is a multi-stroke input characters with extremely long cursive shaped where it has stroke order variability and stroke direction variability. Due to this structural limitation, recognition speed is a crucial issue to apply traditional online handwriting recognition algorithm for Bengali language learning. In this work, we have adopted hierarchical recognition approach to improve the recognition speed that makes our system adaptable for web-based language learning. We applied writing speed free recognition methodology together with hierarchical recognition algorithm. It ensured the learning of all aged population, especially for children and older national. The experimental results showed that our proposed hierarchical recognition algorithm can provide higher accuracy than traditional multi-stroke recognition algorithm with more writing variability
    corecore