9,755 research outputs found

    The Effect of a Diverse Dataset for Transfer Learning in Thermal Person Detection

    Get PDF
    Thermal cameras are popular in detection for their precision in surveillance in the dark and for privacy preservation. In the era of data driven problem solving approaches, manually finding and annotating a large amount of data is inefficient in terms of cost and effort. With the introduction of transfer learning, rather than having large datasets, a dataset covering all characteristics and aspects of the target place is more important. In this work, we studied a large thermal dataset recorded for 20 weeks and identified nine phenomena in it. Moreover, we investigated the impact of each phenomenon for model adaptation in transfer learning. Each phenomenon was investigated separately and in combination. the performance was analyzed by computing the F1 score, precision, recall, true negative rate, and false negative rate. Furthermore, to underline our investigation, the trained model with our dataset was further tested on publicly available datasets, and encouraging results were obtained. Finally, our dataset was also made publicly available

    Occupancy Analysis of the Outdoor Football Fields

    Get PDF

    Effects of Pre-processing on the Performance of Transfer Learning Based Person Detection in Thermal Images

    Get PDF

    WiSARD: A Labeled Visual and Thermal Image Dataset for Wilderness Search and Rescue

    Full text link
    Sensor-equipped unoccupied aerial vehicles (UAVs) have the potential to help reduce search times and alleviate safety risks for first responders carrying out Wilderness Search and Rescue (WiSAR) operations, the process of finding and rescuing person(s) lost in wilderness areas. Unfortunately, visual sensors alone do not address the need for robustness across all the possible terrains, weather, and lighting conditions that WiSAR operations can be conducted in. The use of multi-modal sensors, specifically visual-thermal cameras, is critical in enabling WiSAR UAVs to perform in diverse operating conditions. However, due to the unique challenges posed by the wilderness context, existing dataset benchmarks are inadequate for developing vision-based algorithms for autonomous WiSAR UAVs. To this end, we present WiSARD, a dataset with roughly 56,000 labeled visual and thermal images collected from UAV flights in various terrains, seasons, weather, and lighting conditions. To the best of our knowledge, WiSARD is the first large-scale dataset collected with multi-modal sensors for autonomous WiSAR operations. We envision that our dataset will provide researchers with a diverse and challenging benchmark that can test the robustness of their algorithms when applied to real-world (life-saving) applications
    • …
    corecore