19,700 research outputs found

    Turbulent jet interaction with a long rise-time pressure signature

    Get PDF
    A sonic boom signature with a long rise time has the ability to reduce the sonic boom, but it does not necessarily minimize the sonic boom at the ground level because of the real atmospheric turbulence. In this study, an effect of the turbulence on a long rise-time pressure signature was experimentally investigated in a ballistic range facility. To compare the effects of the turbulence on the long and short rise-time pressure signatures, a cone-cylinder projectile that simultaneously produces these pressure signatures was designed. The pressure waves interacted with a turbulent field generated by a circular nozzle. The turbulence effects were evaluated using flow diagnostic techniques: high-speed schlieren photography, a point-diffraction interferometer, and a pressure measurement. In spite of the fact that the long and short rise-time pressure signatures simultaneously travel through the turbulent field, the turbulence effects do not give the same contribution to these overpressures. Regarding the long rise-time pressure signature, the overpressure fluctuation due to the turbulence interaction is almost uniform, and a standard deviation 1.5 times greater than that of the no-turbulence case is observed. By contrast, a short rise-time pressure signature which passed through the same turbulent field is strongly affected by the turbulence. A standard deviation increases by a factor of 14 because of the turbulence interaction. Additionally, there is a non-correlation between the overpressure fluctuations of the long and short rise-time pressure signatures. These results deduce that the length of the rise time is important to the turbulence effects such as the shock focusing/diffracting

    Crumpling wires in two dimensions

    Full text link
    An energy-minimal simulation is proposed to study the patterns and mechanical properties of elastically crumpled wires in two dimensions. We varied the bending rigidity and stretching modulus to measure the energy allocation, size-mass exponent, and the stiffness exponent. The mass exponent is shown to be universal at value DM=1.33D_{M}=1.33. We also found that the stiffness exponent α=0.25\alpha =-0.25 is universal, but varies with the plasticity parameters ss and θp\theta_{p}. These numerical findings agree excellently with the experimental results

    On the suitability and development of layout templates for analog layout reuse and layout-aware synthesis

    Get PDF
    Accelerating the synthesis of increasingly complex analog integrated circuits is key to bridge the widening gap between what we can integrate and what we can design while meeting ever-tightening time-to-market constraints. It is a well-known fact in the semiconductor industry that such goal can only be attained by means of adequate CAD methodologies, techniques, and accompanying tools. This is particularly important in analog physical synthesis (a.k.a. layout generation), where large sensitivities of the circuit performances to the many subtle details of layout implementation (device matching, loading and coupling effects, reliability, and area features are of utmost importance to analog designers), render complete automation a truly challenging task. To approach the problem, two directions have been traditionally considered, knowledge-based and optimization-based, both with their own pros and cons. Besides, recently reported solutions oriented to speed up the overall design flow by means of reuse-based practices or by cutting off time-consuming, error-prone spins between electrical and layout synthesis (a technique known as layout-aware synthesis), rely on a outstandingly rapid yet efficient layout generation method. This paper analyses the suitability of procedural layout generation based on templates (a knowledge-based approach) by examining the requirements that both layout reuse and layout-aware solutions impose, and how layout templates face them. The ability to capture the know-how of experienced layout designers and the turnaround times for layout instancing are considered main comparative aspects in relation to other layout generation approaches. A discussion on the benefit-cost trade-off of using layout templates is also included. In addition to this analysis, the paper delves deeper into systematic techniques to develop fully reusable layout templates for analog circuits, either for a change of the circuit sizing (i.e., layout retargeting) or a change of the fabrication process (i.e., layout migration). Several examples implemented with the Cadence's Virtuoso tool suite are provided as demonstration of the paper's contributions.Ministerio de Educación y Ciencia TEC2004-0175

    Additional application of the NASCAP code. Volume 2: SEPS, ion thruster neutralization and electrostatic antenna model

    Get PDF
    The interactions of spacecraft systems with the surrounding plasma environment were studied analytically for three cases of current interest: calculating the impact of spacecraft generated plasmas on the main power system of a baseline solar electric propulsion stage (SEPS), modeling the physics of the neutralization of an ion thruster beam by a plasma bridge, and examining the physical and electrical effects of orbital ambient plasmas on the operation of an electrostatically controlled membrane mirror. In order to perform these studies, the NASA charging analyzer program (NASCAP) was used as well as several other computer models and analytical estimates. The main result of the SEPS study was to show how charge exchange ion expansion can create a conducting channel between the thrusters and the solar arrays. A fluid-like model was able to predict plasma potentials and temperatures measured near the main beam of an ion thruster and in the vicinity of a hollow cathode neutralizer. Power losses due to plasma currents were shown to be substantial for several proposed electrostatic antenna designs

    A critical review of experimental accomplishments in the field of filament-reinforced metal matrix composites Bimonthly progress report

    Get PDF
    Critical review of experimental accomplishments in filament reinforced metal-matrix composite
    corecore