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FOREWORD

The extraordinary potential of composites as a new type of material which can be

tailored in properties to meet the requirements of a wide variety of high performance ap-

plications has created an enormous interest and generated a substantial volume of research

activity in the area of continuous fiber reinforced metals. The demonstration that the pre-

dicted potential of such materials can be achieved has resulted in a rapid expansion of ex-

perimental effort and has created an avalanche of data which requires critical analysis

and review. The emphasis which has been placed on the accelerated transition of this

laboratory curiosity into a viable material for aerospace application has prohibited the

concurrent detailed contemplation by inidividual researchers of ino total volume of data

being generated from the various active organizations.

This critical analysis and review of the research and development accomplishments

in the metal matrix composites field is intended to consolidate the observations of the work

conducted since the Cratchley0) and Kelly and Dovies (2) papers of 1965 in Metallugrical

Reviews, cross-correlate the dot%and compare the results and conclusions for internal con-

sistency and compliance with the theoretical predictions for composite behavior. The

delineation of research and development areas where focused activity can contribute most

to the provision of metal-matrix composite materials to satisfy critical NASA needs is the

ultimate objective of this work.

The review and analysis covers continuous fiber reinforced metal-matrix composites,

their fabrication, properties, and problems.



ABSTRACT

The process of writing the critical review of the experimental accomplishments in

filament reinforced metal-matrix composites was initiated during this contract period. The

process of reviewing individual papers has continued, as has the cross correlation of re-

suits. This bimonthly progress report is composed of the text of the reviewwhich is in

relatively finished form. The associated figures, graphs, and tables are not reproduced

in preliminary form.
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SECTION I

INTRODUCTION

The principles and experimental aspects of fiber reinforced metals were admirably

summarized in 1965 by Kelly and Davies( l ) and Cratchle/2) . The first 4 ;ho,,e articles

provided the basis for thinking about this new class of materials and the second served as

a basis for believing in them. Together they constitute the point of departure for subse-

quent work both in England and in the United States. An enormous expansion in metal

matrix composites research and development has occurred in the past four years. Crotch-

ley(2) indicated that a "great deal remained to be accomplished in demonstrating the fea-

sibility of fiber reinforced metals for various applications". He identified the design of

components from metal matrix composites as the "one field of fiber reinforcement which

had apparently received little or no attention". This critical review will address itself to

the experimental progress which has been made toward applicational acceptance of this new

class of materials.

The historical development of filament reinforced metal matrix composites can be

considered to initiate with the Jech, McDanels and Weeton (3) , Sagamore Conference

Paper in 1959. The reviews of Macklin(4) and Baskey (5) and the ASM Seminar volume(6)

together with the Kelly and Davies0) and Cratchley (2) papers provide a summary of the

developments which occurred prior to 1965. Since that time two books have been pub-

lished which are solely devoted to metal matrix composites (7,8) and multiple chapters of

composite materials books are devoted to filament reinforcements of metals (9-18) . A

technical journal, Composite Materials, has been created in response to the expanding

volume of research being generated. The Defense Metals Information Center prepares a



periodic Review of Recent Developments for the topic Fiber-Reinforced Metals and has

issued two DMIC Reports t19,20) which summarize the research on many unclassified Gov-

ernment-sponsored fiber reinforced-metal research programs. The preceding references,

the Survey of Ceramics Fibers and Fibrous Composite Mate-iols (21) , an ASM bibliography(22),

a Defense Documentation Center report bibliography (23) and the NASA SCAN report noti

fication service for the topic, Composite Materials, were utilized to identify over three

hundred contributions to the technical literature pertaining to filament reinforced metal

matrix composites.

The body of the review has been organized into three principal subdivisions in an

effort to cope with breadth of content which the accumulated literature provides. The

fabrication techniques section is intended to review the types of processes which have

evolved for composite preparation, identify the forms of composite which can be generated

by each process, define the level of mechanical properties which are representative of

the application of specific processes to the various filament-matrix composite systems and

identify the current limitations of each process.

The discussion of the mechanical properties of metal matrix composites is contained

in the second section of the review. It deals with the character of those properties rather

than the absolute values generated by individual experimentalists. And finally the prob-

lem areas associated with or identified by the fabricational processes or mechanical prop-

erties are segregated for discussion. It is the objective of this final section to provide

focus for future work by establishing priorities among the problems and suggesting experi-

mental routes to their solution on the basis of the accumulated observations of the reviewed

technical literature.

2



A historical observation of Thomas, Huffadine and Moore (24) regarding the develop-

ment of cermets is most pertinent to the kind of development which must be accomplished

for the composites field.

"In this particular field (cermets) the initial results rapidly gave rise to the realiza-

tion that the problem of producing useful cermet combinations was more complex than had

been originally envisaged. In particular, their brittleness and lack of impact strength be-

came apparent. This factor, combined with the high cost and non-uniformity of much of

the early material resulted in a waning of interest, The initial over optimism was replaced

by undue pessimism. Throughout this phase the major emphasis had been placed upon the

fabrication and testing of different metal/ceramic combinations in hope of finding a cer-

met with the desired properties. The amount of fundamental work done was, by compari-

son, small, and the net result was the accumulati on of a mass of largely uncorrelated and

inadequately understood data on very many different materials. Cermets were a new class

of substances with distinct characteristics and neither the basic mechanism of bonding, the

effect of different modes of fabrication, the methods of testing required nor the special

design considerations involved were sufficiently appreciated."

The problems of producing useful composites has been identified to be complex and

their high cost and nonuniformity are a caution flag relative to potentially waning interest.

The initial optimism with regard to the achievement of a giant step forward in weight

normalized strength and modulus has been fulfilled. The possibility of the development of

undue pessimism can be avoided by the clear definition of the pertinent problem areas and

the construction of an organized foundation of basic understanding beneath the technologi-

cal advancement which has characterized these past four years of innovation. The com-
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posites field has its accumulation of uncorreioted and inadequately understood data but

an appreciation has evolved for this new class of material which acknowledges the need

for focused work on the basic mechanisms of bonding, the effect of various fabrication

modes, the methods of testing and the special design considerations which are required.
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SECTION II

SUMMARY

A variety of metallurgical processes including hot-pressure bonding, liquid-metal

infiltrating, electrodeposition, vapor deposition, plasma spraying, cold press and sinter,

extrusion and high energy-rate forming have been employed for the fabrication of filament

reinforced metal matrix composites. Of these, by for the greatest emphasis has been

placed on hot-pressure bonding techniques. The objective of any composite fabrication

technique is to accomplish a specific form of material incorporating the reinforcing fila-

ment without breakage, with minimal reaction degradation, at a desired volume percent

filament loading and with an interfacial bond which is sufficient to transmit the applied

ioad from the matrix to the filament. Unfortunately the fabrication process development

aspects of composite materials technology have not been reported in detail. Very few ex-

amples of processing parameter versus mechanical property data can be cited. The gener-

alizations which have been reported are obviously based on such detailed studies but the

velopment effort has apparently been almost universally considered to be pro-

iformation .

process development effort has consistently involved progress along a path of

ecti ves:

Determine filament-matrix stability.

Achieve consolidation of filaments in a matrix .

Achieve tensile strength approximating that predicted by the rule of

mixtures.

Reduce product variability at a high fraction of the rule of mixtures

strength.
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5. Achieve product scale up in size or flexibility of form.

b. Reduce processing costs.

Stage 3 objectives have been achieved for a multitude of filament-matrix combinations

fabricated by a variety of processes and Stage 4 progress has been made for the most ad-

vanced composite system, hot-pressed aluminum-boron. The current applications oriented

character of composites development centers on concurrent progress toward Stiges 4 and 5

objectives. Processing cost reduction is an objective of the future which can only be

achieved on the basis of a definable demane for a reliable material in a useful size and

form .

Filament matrix stability is important to the development of a fabrication process

for composite materials becou ,­ it defines the degrees of freedom which exist for consc!i-

dation with minimal degradation in filament strength properties. The only effective tech-

niques for demonstrating filament stability is the pre- ood past-fabrication mechanical test-

ing of incorporated filaments. Optical microscoPy, electron microscopy, microprobe

analysis, electron diffraction, X-ray diffraction and microhardness scans have been used

to identify the onset of gross reaction in a wide variety of filament matrix systems. So-

phisticated analytical tools have been of tittle value in identifying the onset of degrada-

tion in filament properties.

The development of a sufficient interfacial bond to accomplish load transfer from

the matrix to the filament is an intuitively obvious requirement to achieve rule of mixtures

performance in the composite system. However, little has been done to define the n-ogni-

tude of interfacial tensile or shear strengths, to determine what an adequate bond is or to

correlate bond strength with composite mechanical property performance. The fractographic
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observation of adherent metal skins on filament pullouts, the coordination of pullout

lengths with expected critical transfer lengths and the degree of filament fragmentation in

the composite mechanical testing operation are qualitative indicators that a good bond is

beneficial. However, extended time diffusion reaction which can develop a good bond

can also result in filament strength degradation. The composite property optimization

process involves the definition of the time-temperature regime which yields stability as

measured by filament strength retention and the accomplishment of a well-bonded com-

posite within that stability range.

Table I is a summary of the most prominently investigated filament reinforced com-

posite systems relative to their fabricability in viable form by the various processing tech-

niques.
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SECTION 111

FABRICATION PROCESS DEVELOPMENT

The need for ever increasing composite tensile strength data has taken precedence

over detailed development of basic understanding relative to the various composite fabri-

cation processes for at least three of the last four years. As a result high-strength filament

reinforced samples have been fabricated to demonstrate the achievement of the predicted

potential for metal matrix composite materials. The recent concentration on applications

oriented materials development programs have underlined the need for improved reliability,

lower cost and greater flexibility in product size and form as the three imperatives for

future use. A comprehensive report on manufacturing methods for composite materials by

Glasser and Sump .	contained the metal matrix composite fabrication process develop-

ment which preceded 1965 and summary allFcles by Sutton (44) , Harmon '45" , Davis(46),

Thorntont47), Herzog^48^, Alexander	 and Snide (52) record the continued progress

i n a general fashion

HOT-PRESSURE BONDING

A variety of metallurgical processes, listed in Table I with applicable references,

have been employed for the fabrication of composite materials. Of these, by far the

greatest emphasis has been placed on hot-pressure bonding techniques. Included in the

hot-pressure bonding category is any static pressure consolidation process carried out at

elevated temperature whether it utilizes foil filament stacked arrays as in Figure la,

sheet preforms as in Figure 1b, wire preforms as in Figure lc or powder infiltrated spaced

filament arrays as in Figure td.

The hot-pressure bonding process has been used successfully to fabricate aluminum,

8
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magnesium, titanium and nickel matrix. composites. Foil filament arrays^11,18,20,21,33)

are formed by carefully winding a specific filament spacing onto a foil covered drum and

utilizing a cleanly decomposing binder to fix the filaments in place. An alternate tech-

nique(20) which accomplishes excellent control over filament spacing is cowinding of a

matrix wire between reinforcing filaments. The foil filament array is removed from the

drum and cut to the desired mat size for insertion into the hot press dies. A light retaining

pressure is applied to the stack and the assembly is brought to pressing temperature with

the attendent expulsion of the binder. The hot-pressure bonding step has been conducted

in air, inert gas,or vacuum environments in chambers or as provided in a sealed retort.

Tape preforms (23,25,38,42) are handled in a similar fashion to the foil-filament

arrays, Figure 1b. Both types of starting materials provide for the easy accomplishment of

accurately oriented crossply filament orientations. The exhaustion of a binder phase is

not a processing requirement for the matrix bonded preforms, however, the formation of

the preform tape is considerably more costly than the preparation of a foil-filament array.

Matrix coated filament, Figure lc, has been successfully utilized (34,35) to form uniaxially

oriented filament-matrix arrays. The larger degree of relative motion between filament in

the consolida*ion step and the greater potential for random filament overlaps has resulted

in the principal use of this process with the more duct, le metal filament reinforced metal

matrices. In such systems a considerable deformation of the incorporated filaments can oc-

cur especially as attempts are made for very high filament volume percent loading.

The final process of infiltrating spaced filament arrays with a powder metal matrix is

the most tedious preparation procedure for the hot pressing of metal matrix composites,

Figure Id. The accomplishment and maintenunue of good filament spacing is the tedious
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step. The resultant unioxially aligned product can be consolidated by die or hot isostatic

pressing and has characteristicly been most successful with metal filament reinforcements.

A similar preparation procedure has been utilized for use in extrusion consolidation or ex-

^osure to high energy rate forming processes.

The assembled preforms are exposed to a combination of temperature and pressure for

a specific time in a controlled environment to yield the fully consolidated composite

product. The hots-pressure bonding process has been most extensively utilized to form sheet

or plate composite forms. Representative cross sections of hot pressed uniaxial and orthog-

onal crossply composites are presented in Figures 2a and 2b. The adaptation of the hot-

pressure bonding technique to more complex shapes has been successfully demonstrated(53).

The desired hot pressed final form is differentially simulated as shown in Figure 3a and

pressed in resistance heated conformal dies, Figure 3b, to yield the desired complex shape,

Figure 3c .

Optimiza-ion of the hot-pressure bonding fabrication process has been carried to the

most advanced state for the aluminum-boron system as reflected by compliance of the

maximum tensile vrength properties as a function of volume percent filament with the

strength calculated to be attainable from the proportional contribution of the incorporated

filament and matrix'32,51 ,54,55) Filament strength degradation during an optimized

hot-pressure bonding cycle approximates 109/6.

LIQUID METAL INFILTRATION

Some of the very first reinforced composites were produced by vacuum infiltration

of a tube filled with filaments. Such techniques were and are applicable when the fila-

ment is liquid metal stable. The model systems of refractory metals in matrices which
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exhibit little mutual solubility represent a class of materials which have contributed sig-

nificantly to the understanding of composite characteristics (27-29,56) . However, the ex-

tremely reactive nature of the most advanced filament, boron, has minimized the practi-

cality of liquid state composite fabrication. The model systems have yielded reproducible

quality composites at high volume percent filament loading with close correspondence to

rule of mixtures strength and modulus predictions. Stability is the key to success in the

utilization of liquid metal fabrication techniques and only magnesium of the structural

metal shows significant stability in contact with boron to be practically fabricated by such

techniques. Schuerch (26) achieved compressive strengths approaching 350,000 psi in

early liquid magnesium infiltrated boron specimens. Only a few minu tes of exposure to

liquid aluminum is enough to seriously degrade the filament(34) . The documented stability

of SiC in aluminum matrices(38,57) and the utility of coated boron (SiC, BN, or Ag) as

a more stable reinforcement offers future potential for the expansion of liquid fabrication

techniques. It is the relative instability of the available advanced filaments which has

dictated that little effort be devoted to sophistication of liquid metal fabrication techniques.

Vacuum infiltration, Figure 4a, of a bundle fiber in a tube is a batch process which

is limited in size potential, and susceptible to incomplete or irregular fill. However, the

utility of liquid infiltration techniques has been demonstrated by the continuous casting of

boron filaments in a magnesium matrix (58) and by the effort to form ilaee filament tapes by

the rapid passage of boron through aluminum(34) . The process simply involves the passing

of a bundle of filaments through a metal bath in such a fashion as to accomplish wetting of

the individual fibers as they enter the bath and wiping off the excess as the bundle is

drawn through an orifice in the bottom of the crucible, Figure 4b. The filaments can al-

ternately be passed through holes in the bottom of the crucible and consolidated through a



constraint of the shape and dimensions of the finished rod, Figure 4c. The simplicity of

the process decrees that volume production of rod, tube or structural shapes is possible at

little added cost over that of the incorporated raw materials. The microstructure of a 75

v/o boron-magnesium continuously cast rod is shown in Figure 5a while Figure 5b shows the

almost perfect hexagonal packing of the most densely packed areas. Complete metal

sheathing of even the mosr closely spaced filaments is evident.

The continuous coating process is capable of yielding any uniform cross section form

of uniaxially aligned filament reinforced composite. Rods, tubes and structural shapes are

uniaxial forms of material and as such can take full advantage of the maximized composite

properties in the axial direction. Strength-to-density values in excess of 2 x 106 inches

and modulus-to-density ratios in excess of 500 x 106 inches place this type of material in

the position of exhibiting a two to four +imes advantage over conventional aluminum and

titanium alloys.

ELECTRODEPOSITION

The utilization of electrodeposition as a fabrication technique saw early application

with reactive filaments because it could be accomplished without elevated-temperature

exposure and a concurrently deposited sample of matrix could be obtained for mechanical

test(59-63) The electroforming technique involves the electrodeposition of the matrix onto

a suitable mandrel while concurrently winding the filament reinforcement and has been dis-

cussed by Bonnano(64') . A schematic of the composite fabrication process is shown in Fig-

ure 6. The technique is applicable to any metal that can be electrodeposited and has the

following advantages:

1 . It is a room temperature fabrication in process.

2. A fully dense matrix sample can be concurrently deposited.

12



3. Intimate filament-matrix contact is accomplished at the interface.

4. Any shape which can be made as a surface of revolution can be fabricated.

5.. Accurate control can be exercised over filament spacing and thus volume

percent loading.

Figure 7 is a schematic of the growth pattern which is characteristic of this fabrication

process. Figure 7A indicates the mode of formation of the electrodeposit on the filaments

which are wound onto an undercoat of nickel on the winding mandrel. Figure 8 shows a

monolayer nickel-boron tape formed in this manner. Figure 7B shows the continuation of

the process by winding and coating of a second layer. Multiple layer samples are pro-

duced by a repetition of this process until the desired thickness is achieved, Figure 9.

Figure 7C shows the location of potential void sites in the composite structure. Type 1

voids occur when deposition on the filament progresses at a rate such that the growth from

two adjacent filaments intersects before growth from the undercoat reaches the point of

intersection. Type 1 voids can be grown out at wide filament spacings by flooding the

mandrel with fresh electrolyte and by the imposition of plate-deplate cycles on the form-

ing operation. Type 2 voids o,-e formed when the surface contour of the overcoat for the

first layer does not conform to the filament sizr and shape. The character of such voids is

shown in Figure 10. If the overcoat is thick enough the grooves become rounded and ac-

cept the subsequent filament layer with little porosity. However, at high volume percent

loadings the crevices occupied by the circular filaments leave triangular voids beneath

them. It should bt emphasized that even when the geometry of the surface is correct for

the acceptance of the filament without void formation, the character of tLe bond between

the filament and the matrix is different at the contact point than on the rest of its circum-

ference. At that point it has simply been laid against the matrix, while elsewhere the

13



matrix has been electrodeposited onto it. Another important consideration in the charac-

terization of electroformed composites is the need for accurate control over filament spoc-

ing. Variations in filament spacings result in changes in the surface contour of the elec-

trodeposited overcoat. Wide spacings yield a larger valley and close spacings create a

larger hump and the effect of such misspacings is to force greater misspacings upon the sub-

sequent layers. Such misspacings ultimately lead to a greater void formation in higher

volume percent multilayered specimens.

This effort characterizing the electroforming process for continuous filament rein-

forced composites can be summarized as follows:

1 . Monolayer filament tapes can be produced with minimal void entrap-

ment to roughly 45 v/o .

2. Multilayer composites can be formed to equivalent volume percent

loadings but geometrical considerations combined with the potential

for misspacings make void formation a problem to be contended with.

3. A densification process should be considered necessary in conjunction

with composites formed by electrodeposition.

4. Monolayer tapes can be used as a raw material for multilayer com-

poste fabrication by hot-pressure bonding.

In addition to monolayer tapes, multilayer circumferentially wound reinforced

structures can be formed as illustrated in Figure 11 , a 20 filament layer circumferentially

wound simulated motor case in the AI-B system. The multilayer circumferentially wound

composites have demonstrated a tensile insensitivity to the hoop oriented voids (65) as

shown in Table II. Hoop strengths exceeding 200,000 psi with a modulus of 	 35 million

psi generate strength-to-density values in excess of 2.0 x 106 inches and modulus -to-density

14



values over 400 x 106 inches. Composite strength in the transverse direction is minimal

(20-30% of the matrix strength) because of the incorporation of 10-15% voids.

The electrodeposition process is capable of yielding continuous monolayer composite

form of a width which is only limited by the engineering ability to collimate thousands of

filaments. Circumferentially wound structures of several feet in diameter could be de-

posited as a simple extension of demonstrated fabrication capabilities.

PLASMA SPRAYING

The plasma spraying technique for composite fabrication has been optimized most

completely by Krieder (23,25) in the aluminum matrix system cnd the feasibility of the

process for the formation of tungsten wire reinforced tungsten rocket nozzle configurations

has been demonstrated(66) .

The process is shown schematically in Figure 12(23) . This schematic is equally ap-

plicable to the description of chemical vapor deposited and vacuum deposited matrices on

which a lesser degree of development has been conducted. A layer of matrix in the form

of a foil or as a plasma sprayed layer on the mandrel is overwrapped with a spaced array

of reinforcing filaments which are incorpora ted by the spraying of a subsequent layer of

matrix. The operation is conducted in an inert atmosphere or with a protectively shrouded

flame, The as-sprayed matrix is not fully dense (12-15 v/o voids) and contains a some-

what higher oxide content (1 .5 wt %) than foi I type material. Transverse strength is low

in the as-aprayed condition and matrix ductility is lower than wrought aluminum. The im-

pact of rr.olten particles of matrix on the filament surface provides ultimate contact at the

filament matrix interface, and the immediate quenching of the small particles prohibits

extensive reaction degradation in the composite formation process. Boron degradation is
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approximately 200/o(23) in the plasma spraying process while the coefficient of variation is

almost doubled.

The preparation of multilcyer composites by plasma spraying is characterized by the

some sort of void formation and filament misplacement difficulties described for the elec-

trodeposited composites. Also, circumferentially reinforced composites exhibit the same

poor transverse properties. Post deposition sintering treatments spherodize voids but do not

increase matrix density while hot-pressure bonding of multilayer or stacked monolayer

plasma sprayed material results in a fully consolidated composite with transverse properties

approximately 1/2 that of the matrix itself.

Further optimization of the plasma spray composite fabrication process (39) has been

achieved utilizing the silicon carbide coated boron filament which exhibits significantly

less sensitivity to the high oxygen content of the sprayed matrix. Coated boron filament

does not exhibit the relatively large fabrication degradation nor does it degrade as rapidly

as a function of time at temperature in the plasma sprayed condition. This effort concen-

trated on the optimization of the plasma spraying process to yield a tape preform for subse-

quent hot-pressure consolidation.

The monolayer tape material as a preform for subsequent hot-pressure bonding experi-

ments has an operational advantage over organically bonded foil filament arrays in that

no binder need be exhausted in the fabrication step. Commercially available steel foil

heat treating envelops can be utilized to provide the protective environment for the hot-

pressure bonding step. However, the higher cost of the preform fabrication process, the

necessity of using a higher price coated filament, and the effect of the higher matrix

oxide content on stability and mechanical properties are identified disadvantages.
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The excellent as-sprayed mechanical properties qualify this process for the formation

of multilayer circumferentially reinforced bodies such as the simulated motor case shown in

Figure 11 or as a hoop reinforcement in the intermediate temperature ring sections of jet

aircraft engine compressor analogous to the boron reinforced resin rings which have been

evaluated by Pratt & Whitney at lower temperatures.

A direct application evaluation for plasm sprayed composites was conducted by

Greening(66) where tungsten fiber was incorporated in a tungsten matrix by plasma spray

deposition. Figure 13 shows a mandrel with a helically wrapped array of filaments prior

to plasma spraying. Operational tests on the fabricated nozzles indicated the feasibility

of this high-temperature refractory composite structure for relatively simple fabrication of

many complex configurations on conventional equipment at a nominal cost.

CHEMICAL VAPOR DEPOSITION

Chemical vapor deposition as a technique for analogous!y infiltrating filament arrays

have been i nvestigated in a preliminary fashion. Withers 
(67) 

has worked with the AI-Be

,ptem utilizing the decomposition of aluminum alklys on a heated mandrel wound with

beryllium filament. While chemical vapor deposition yield a fully dense deposit of the

matrix, the irregular nature of the composite su rface after the encapsulation of the first

filament layer causes misspocings and contact voids as subsequent layers are added.

Chemical vapor deposition has the process attribute of yielding metal deposition on all

heated surfaces simultaneously rather than being a line of sight process as in plasma spray-

ing or depositing only on the surface of electrically conducting constituents as in elec-

trodeposition. The chemical vapor deposition process operates at a temperature which is

low relative to the metal melting point or the effective hot-pressure bonding temperature
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and thus offers the potential of nonreactive consolidation. While feasibility has been

demonstrated, fabrication process optimization would be required to achieve useful

mechanical properties in a filament wound structural application.

The feasibility of forming W-W and W-B composites by chemical vapor deposition

techniques has been demonstrated by Greszeuk(68) where the relatively low metal depo-

sition temperature (800-1 1000F)made consolidation possible without the severe reactivity

that would have accompanied hot-pressure bonding or liquid infiltration procedures. The

deposition morphology reported indicates that continuous tape formation by chemical vapor

deposition on a spaced array of filaments can be considered feasible.

COLD PRESS AND S INTERING

The process of cold pressing powder-filament arrays and sintering has been utilized

principally as a preparation procedure for subsequent extrusion and rolling consolidation.

The process has been principally applied to metal filament reinforcement of metal matrices.

Baskey (69) has indicated that the long time sintering of cold pressed powder-filament

blends at relatively high temperature is an undesirable technique for the accomplishment

of full densi ty composites because of excessive degradation of incorporated filaments.

Additionally the thermal expansion mismatch in some systems, i.e. W or Mo in Hostel loy X

results in the matrix expanding away from the wires during sintering. Thus cold pressing

or cold pressing and sintering were used only to achieve compact and coherent billets for

subsequent hot pressing, extrusion or rolling. Adamski, et 01 (70) on the other hand utilized

the cold press and sinter technique to form Ag-W composites with mechanical property re-

sults which were equivalent to hot pressed samples. However, the number of specimens

involved make speculation as to the influence of fabrication variables on properties most

hazardous.
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The Baskey observation that long-term elevated temperature exposures are required

for a high degree of densification would seem to limit the process to filament-matrix com-

binations where extreme stability is exhibited, i.e. stable reinforcements in the low melt-

ing metal matri y es .

EXTRUSION AND ROLLING

Refractory metal wires have been consolidated in nickel base superalloys and in

titanium alloys by extrusion and rolling techniques (69) and the brittle filament boron has

been extruded in an aluminum matrix (71) . The Baskey (69) work demonstrates how thorough

a fabrication process development program can be when a relatively inexpensive filament

is being incorporated by a production type process. The experimental program defines the

chemical compatibility of the alloys and filaments of interest and then proceeds to fabri-

cate discontinuous and continuous filament composites from hot or cold pressed billets by

extrusion and hot rolling within the defined range of chemical compatibility. It is one of

the few detailed investigations of the influence of fabrication variables on the properties

of fiber-reinforced metals.

It is clearly demonstrated that randomly oriented discontinuous filament-matrix powder

mixtures can be cold or hot pressed into a preform for extrusion to yield uniform cross sec-

tion rod composites containing aligned fiber reinforcements. The effects of preform treat-

ments and extrusion parameters together with post-extrusion heat treatment upon the broad-

est possible range of pertinent mechanical properties are examined with a sufficient number

of samples to permit the definition of a reliable set of conclusions which define the opti-

mum treatment for particular sets of desirable properties. The results are compared to both

the inreinforced matrix similarly treated and to the wrought forms of alloys which are the
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conventional competitors for the applicationol range envisioned for these composite mate-

rials.

Initial filament strengths are monitored but the composite is characterized in terms

of what processing variations can do to its properties rather than in terms of what theory

predicts it should be capable of accomplishing. Improvements are registered in both the

nickel base superalloys and in the titanium alloy matrices in tensile and yield strengths

and stress rupture properties formed by extrusion of discontinuous refractory metal filament

reinforced powder compacts. Continuous filament composites of equivalent volume percent

loadings exhibited better performance than the discontinuous ones. Very well bonded com-

posites were achieved in spite of the large disparity in thermal expansion coefficients.

HIGH ENERGY RATE FORMING

The utilization of high energy rate forming as a composite fabricution technique has

been surveyed by a number of investigators at the Pacific Northwest Laboratories of Battelle

Memorial Institute. Figure 14 is a schematic of pneumatic impaction apparatus utilized to

impart pressure: pulses of up to 400,000 psi to canned powder filament arrays inserted in

the die at elevated temperatures. While the process has admirably demonstrated its capa-

bility to accomplish consolidation rhere has been little process optimization against filament

degradation or composite properties. The process feasibility work has indicated that low

consolidation temperatures result in excessive filament breakage and it is apparent that

higher consolidation tf. •nperatures result in serious degradation in filament properties. It

is apparent from the mechanical property data on the system which has been studied in the

most detail, Ti SiC(75,76) , that the time-temperature exposure associated with the high

energy rate forming step is excessive. The optimum HERF temperature of 1100 oC for that
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system is significantly above the 900oC maximum temperature utilized for hot-pressure

bonding consolidation of the same system(38,41)

The justification for detailed HERF process optimization in a useful metal matrix

system lies in the requirement for scale up in the size of sheet or plate composite, which

can be reproducibly fabricated. In principal, the use of explosive techniques or HERF to

apply the consolidation pressure for large size composites is an attractive one. The serious

problems of maintaining a uniform distribution of filaments while minimizing both filament

breakage and filament reaction degradation have been identified and serve as the basis for

continued exploration of the utility of this composite fabrication technique.

The summarized processes represent the source of various forms of composites. The

most advanced yield properties which closely approximate the values predicted by rule of

mixtures calculation. The accomplishment of rule of mixtures values is heralded and broad

generalizations concerning the effects of processing variables on the attainment of such

properties are recited . But the experimental data which document the generalizations are

largely invisible.

The accomplishment of high strength and modulus values has experimentally demon-

strated the potential for composite materials but the translation of existing processes to

useful size, with good reliability and at a cost competitive with more conventional alloy

designs is the current challenge to the experimentalist. What then can be derived from the

critical evaluation of the reported experimental accomplishment in the area of composite

fabrication technology?

Table III is a summary of the types of process development data which has been most

informative in the dual task of optimizing composite mechanical properties and understanding
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the origins of the derived properties. Contained in Table III is the blueprint to the under-

standing of product variability. In simple terms we must understand the filament reinforce-

ment that is being utilized; we must understand it in terms which are pertinent to its func-

tioning in the composite; we must monitor the effect of various processing variables upon

its characteristics; and we must correlate its characteristics with the properties derived from

the fabricated composite. On a parallel framework we must understand the load translation

process in a functioning composite in terms of the character and strength of interfacial bond

which is developed by the range of fabrication parameters which maintain filament prop-

erties and accomplish composite consolidation. The model for composite failure outlined

by Rosen(77) defines the type of data which is essential to the establishment of consistency

in such materials:

"When a fiber break occurs, there are several possibilities for the subsequent behav-

ior of the composite. First, the high interface shear stresses may produce interface failure

which could propagate along the length of the fiber reducing the fiber effectiveness over

a substantial fiber length. To achieve the potential of the fiber strength, it is necessary

to study and determine the fabrication conditions which will yield an interface sufficiently

strong to prevent interface shear failure. This can be done by using either a high-strength

bond or a ductile matrix which permits redistribution of the shear stresses. In the latter

case the length of fiber which is affected by the break will increase as it will take a

longer distance to retransmit the stresses back into the fiber at the low stress level of a

ductile matrix. With a strong bond, the interface conditions can be overcome as a poten-

tial source of failure. Second, the fracture toughness of the matrix must be considered to

prevent the propagation of a crack through the matrix and parallel to the filaments. A
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third possibility is that the initial crack will propagate across the composite resulting in

failure. This is influenced in part by the fracture toughness of the matrix, and again, since

it is clear that with brittle fibers one can always expect a fracture to occur at a relatively

low stress level, it is important that the fracture toughness of the matrix material is suf-

ficient to prevent propagation of this crack across the composite. If these two potential

modes of failure are arrested, it will then be possible to continue to increase the applied

tensile load and to obtain breaks at other points of imperfection along the fibers"

Thus the ultimate objective of a metal matrix composite development program must

be a sufficiently well-bonded system to accomplish repeated filament fracture until a

statistical accumulation of fiber fractures occurs in the vicinity of one cross section to

provide the opportunity for final catastrophic failure. While the rule of mixtures has been

an admirable target for composite fabrication optimization, every major fabrication pro-

gram has yielded individual composite strength values which exceed rule-of-mixtures cal-

culations. If such strength values are to be attained consistently, the statistical nature of

the failure phenomenon must be realized and new objectives must be set which transcend

those which would be calculated from a simple rule-of-mixtures calculation.

We know that filament strength goes up with decreasing gauge length (78) . We

know that the standard deviation on strength goes down with decreasing gauge length(79)

We know that filaments do break to relatively short lengths in tested composite specimens(39)

and we know that the filament fragment lengths tend to be shorter immediately adjacent

to the site of final specimen failure (.41) . The quantitative representation of these charac-

teristics as a function of fabrication parameters is essential to the basic understanding of

composite fracture and minimization of variability in composite specimens.
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The work of Lenoe (79) establishes statistically the ultimate tensile strength of the

filament utilized in that program as a function of gauge length. The standard deviation on

U.T.S. as a function of gauge length could be computed. 	 The thermal degradation of

the filament for time-temperature exposures which were pedinent to the fabrication pro-

cedure was documented in sufficient detail to again permit calculation of standard devia-

tions on U.T.S. at a single gauge length. Filament extracted from fabricated composite

samples were tested in the same fashion. The expansion of this procedure to cover a range

of gauge lengths and to document the effect of the matrix digestion solution on heat

treated filament would provide the background for the interpretation of digested filament

degradation effects as a function of fabrication time, temperature, pressure and environ-

ment as reported by Cunningham (33) or the correlation of filament degradation data with

composite properties as a function of complete range of processing parameters such as were

studied by Baskey(69) . The accomplishment of minimum filament degradation in the fabri-

cation process and the utilization of the full strength contribution of the minimally de-

graded filament requires an adequate bond at the filament-matrix interface. Thus quantifi-

cation of the measurement of the degree of shear strength developed at the interface is

essential . 7ne length of sheathed filament pullouts or the measurement of post tensile test

filament fragmenss in the specimen gauge length are techniques which have been utilized.

The consistent minimization of filament strength degradation and the concurrent establish-

ment of an adequate degree of bonding at the load transfer interface will permit the

evaluation of composite fabrication processes on the basis of consistent full utilization of

reinforcing potential.
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Cost is the second deterren t to early application of metal matrix composites on a

competitive basis with other structural materials. The $500-$600/lb price for hot-pressure

bonded material in multi-thousand pound quantities represents fabrication costs which are

a factor of 3 to 4 over the cost of incorporated filament. Process economization is obviously

essential. Many metallurgical processes can and will prove capable of yielding viable

composite samples but detailed and expensive process development effort --.ust give heavy

emphasis to the potential for economical production in a useful size.
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