4,530 research outputs found

    Study on speed profile across speed bumps

    Get PDF
    A speeding vehicle can be a menace to other road users particularly on roads where interaction between motorized and non-motorized traffic is high, such as residential streets, school zones and community areas. Although speed limit signs are placed in accordance with the requirements of the standards, much is left to the conscience of the drivers whether they should abide by them. Hence, controlling vehicular speeds is an important issue in traffic management. The best way to influence driver speed is through traffic management. One way of controlling speed is to use static speed control devices like bumps which produces discomfort while driver experiences while crossing over it. Road bumps play a crucial role in enforcing speed limits, thereby preventing over speeding of vehicles. It significantly contributes to the overall road safety objective through the prevention of accidents that lead to death of pedestrians and damage of vehicles. This thesis aims to present the results of a study on the performance of road bumps used in India in reducing vehicle speed. The purpose of this work is to study speed across bumps, like speed at bump, speed reduction, deceleration and acceleration by having a detailed survey of vehicular behavior near bumps of various heights. The speed profile of vehicles are determined and analyzed at various locations along the road prior to the bump, on the bump and after the bump. A critical speed change analysis has been conducted and the result presented for various vehicle category and type of bumps at various locations

    Theories and figures of technical mediation.

    Get PDF

    A first approach to understanding and measuring naturalness in driver-car interaction

    Get PDF
    With technology changing the nature of the driving task, qualitative methods can help designers understand and measure driver-car interaction naturalness. Fifteen drivers were interviewed at length in their own parked cars using ethnographically-inspired questions probing issues of interaction salience, expectation, feelings, desires and meanings. Thematic analysis and content analysis found five distinct components relating to 'rich physical' aspects of natural feeling interaction typified by richer physical, analogue, tactile styles of interaction and control. Further components relate to humanlike, intelligent, assistive, socially-aware 'perceived behaviours' of the car. The advantages and challenges of a naturalness-based approach are discussed and ten cognitive component constructs of driver-car naturalness are proposed. These may eventually be applied as a checklist in automotive interaction design.This research was fully funded by a research grant from Jaguar Land Rover, and partially funded by project n.220050/F11 granted by Research Council of Norway

    Evaluation of Haptic Patterns on a Steering Wheel

    Get PDF
    Infotainment Systems can increase mental workload and divert visual attention away from looking ahead on the roads. When these systems give information to the driver, provide it through the tactile channel on the steering, it wheel might improve driving behaviour and safety. This paper describes an investigation into the perceivability of haptic feedback patterns using an actuated surface on a steering wheel. Six solenoids were embedded along the rim of the steering wheel creating three bumps under each palm. Maximally, four of the six solenoids were actuated simultaneously, resulting in 56 patterns to test. Participants were asked to keep in the middle road of the driving simulator as good as possible. Overall recognition accuracy of the haptic patterns was 81.3%, where identification rate increased with decreasing number of active solenoids (up to 92.2% for a single solenoid). There was no significant increase in lane deviation or steering angle during haptic pattern presentation. These results suggest that drivers can reliably distinguish between cutaneous patterns presented on the steering wheel. Our findings can assist in delivering non-critical messages to the driver (e.g. driving performance, incoming text messages, etc.) without decreasing driving performance or increasing perceived mental workload

    Changes in subjective ratings of impulsive steering wheel vibration due to changes in noise level: a cross-modal interaction

    Get PDF
    Cross-modal effects occur when subjective opinions of stimuli from one sense (e.g., tactile at steering wheel) are influenced by simultaneous stimuli in another sense (auditory). A steering wheel rig was used to provide specified vibration stimuli to participants' hands, and a recording of vehicle sound was played in accordance with the vibrations. Participants were subjected to test conditions with vibration values between 10 m s and 20 m s, and auditory stimuli between 88 dB(A) and 98 dB(A) peak. Participants were neither informed of nor asked about any changes in the noise level: thus the purpose of the experiment was withheld from them. The results show that as noise level increased, subjective ratings of steering wheel vibration increased. Therefore, car cabin noise could be used to enhance the feel of the vibration at the steering wheel

    Use the Difficulty through Schwierigkeit: Antiusability as Value-driven Design

    Get PDF
    In the style of a polemic discursive essay, Antiusability (also known as Schwierigkeit) is introduced as a radical design paradigm to reawaken dedicated awareness of the user-system interface through challenge. A philosophical work in flux, it is described as a kind of science (or logic) of difficulty with an underpinning that promotes the generic greater good in usability per se

    What you see is what you feel : on the simulation of touch in graphical user interfaces

    Get PDF
    This study introduces a novel method of simulating touch with merely visual means. Interactive animations are used to create an optical illusion that evokes haptic percepts like stickiness, stiffness and mass, within a standard graphical user interface. The technique, called optically simulated hapic feedback, exploits the domination of the visual over the haptic modality and the general human tendency to integrate between the various senses. The study began with an aspiration to increase the sensorial qualities of the graphical user interface. With the introduction of the graphical user interface – and in particular the desktop metaphor – computers have become accessible for almost anyone; all over the world, people from various cultures use the same icons, folders, buttons and trashcans. However, from a sensorial point of view this computing paradigm is still extremely limited. Touch can play a powerful role in communication. It can offer an immediacy and intimacy unparalleled by words or images. Although few doubt this intrinsic value of touch perception in everyday life, examples in modern technology where human-machine communication utilizes the tactile and kinesthetic senses as additional channels of information flow are scarce. Hence, it has often been suggested that improvements in the sensorial qualities of computers could lead to more natural interfaces. Various researchers have been creating scenarios and technologies that should enrich the sensorial qualities of our digital environment. Some have developed mechanical force feedback devices that enable people to experience haptics while interacting with a digital display. Others have suggested that the computer should ‘disappear’ into the environment and proposed tangible objects as a means to connect between the digital and the physical environment. While the scenarios of force feedback, tangible interactions and the disappearing computer are maturing, millions of people are still working with a desktop computer interface every day. In spite of its obvious drawbacks, the desktop computing model penetrated deeply into our society and cannot be expected to disappear overnight. Radically different computing paradigms will require the development of radically different hardware. This takes time and it is yet unsure when, if so, other computing paradigms will replace the current desktop computing setup. It is for that reason, that we pursued another approach towards physical computing. Inspired by renaissance painters, who already centuries ago invented illusionary techniques like perspective and trompe d’oeil to increase the presence of their paintings, we aim to improve the physicality of the graphical user interface, without resorting to special hardware. Optically simulated haptic feedback, described in this thesis, has a lot in common with mechanical force-feedback systems, except for the fact that in mechanical force-feedback systems the location of the cursor is manipulated as a result of the force sent to the haptic device (force-feedback mouse, trackball, etc), whereas in our system the cursor location is directly manipulated, resulting in an purely visual force feedback. By applying tiny displacements upon the cursor’s movement, tactile sensations like stickiness, touch, or mass can be simulated. In chapter 2 we suggest that the active cursor technique can be applied to create richer interactions without the need for special hardware. The cursor channel is transformed from an input only to an input/output channel. The active cursor displacements can be used to create various (dynamic) slopes as well as textures and material properties, which can provide the user with feedback while navigating the on-screen environment. In chapter 3 the perceptual illusion of touch, resulting from the domination of the visual over the haptic modality, is described in a larger context of prior research and experimentally tested. Using both the active cursor technique and a mechanical force feedback device, we generated bumps and hole structures. In a controlled experiment the perception of the slopes was measured, comparing between the optical and the mechanical simulation. Results show that people can recognize optically simulated bump and hole structures, and that active cursor displacements influence the haptic perception of bumps and holes. Depending on the simulated strength of the force, optically simulated haptic feedback can take precedence over mechanically simulated haptic feedback, but also the other way around. When optically simulated and mechanically simulated haptic feedback counteract each other, however, the weight attributed to each source of haptic information differs between users. It is concluded that active cursor displacements can be used to optically simulate the operation of mechanical force feedback devices. An obvious application of optically simulated haptic feedback in graphical user interfaces, is to assist the user in pointing at icons and objects on the screen. Given the pervasiveness of pointing in graphical interfaces, every small improvement in a target-acquisition task, represents a substantial improvement in usability. Can active cursor displacements be applied to help the user reach its goal? In chapter 4 we test the usability of optically simulated haptic feedback in a pointing task, again in comparison with the force feedback generated by a mechanical device. In a controlled Fitts’-law type experiment, subjects were asked to point and click at targets of different sizes and distances. Results learn that rendering hole type structures underneath the targets improves the effectiveness, efficiency and satisfaction of the target acquisition task. Optically simulated haptic feedback results in lower error rates, more satisfaction, and a higher index of performance, which can be attributed to the shorter movement times realized for the smaller targets. For larger targets, optically simulated haptic feedback resulted in comparable movement times as mechanically simulated haptic feedback. Since the current graphical interfaces are not designed with tactility in mind, the development of novel interaction styles should also be an important research path. Before optically simulated haptic feedback can be fully brought into play in more complex interaction styles, designers and researchers need to further experiment with the technique. In chapter 5 we describe a software prototyping toolkit, called PowerCursor, which enables designers to create interaction styles using optically simulated haptic feedback, without having to do elaborate programming. The software engine consists of a set of ready force field objects – holes, hills, ramps, rough and slick objects, walls, whirls, and more – that can be added to any Flash project, as well as force behaviours that can be added to custom made shapes and objects. These basic building blocks can be combined to create more complex and dynamic force objects. This setup should allow the users of the toolkit to creatively design their own interaction styles with optically simulated haptic feedback. The toolkit is implemented in Adobe Flash and can be downloaded at www.powercursor.com. Furthermore, in chapter 5 we present a preliminary framework of the expected applicability of optically simulated haptic feedback. Illustrated with examples that have been created with the beta-version of the PowerCursor toolkit so far, we discuss some of the ideas for novel interaction styles. Besides being useful in assisting the user while navigating, optically simulated haptic feedback might be applied to create so-called mixed initiative interfaces – one can for instance think of an installation wizard, which guides the cursor towards the recommended next step. Furthermore since optically simulated haptic feedback can be used to communicate material properties of textures or 3D objects, it can be applied to create aesthetically pleasing interactions – which with the migration of computers into other domains than the office environment are becoming more relevant. Finally we discuss the opportunities for applications outside the desktop computer model. We discuss how, in principle, optically simulated haptic feedback can play a role in any graphical interface where the input and output channels are decoupled. In chapter 6 we draw conclusions and discuss future directions. We conclude that optically simulated haptic feedback can increase the physicality and quality of our current graphical user interfaces, without resorting to specialistic hardware. Users are able to recognize haptic structures simulated by applying active cursor displacements upon the users mouse movements. Our technique of simulating haptic feedback optically opens up an additional communication channel with the user that can enhance the usability of the graphical interface. However, the active cursor technique is not to be expected to replace mechanical haptic feedback altogether, since it can be applied only in combination with a visual display and thus will not work for visually impaired people. Rather, we expect the ability to employ tactile interaction styles in a standard graphical user interface, could catalyze the development of novel physical interaction styles and on the long term might instigate the acceptance of haptic devices. With this research we hope to have contributed to a more sensorial and richer graphical user interface. Moreover we have aimed to increase our awareness and understanding of media technology and simulations in general. Therefore, our scientific research results are deliberately presented within a social-cultural context that reflects upon the dominance of the visual modality in our society and the ever-increasing role of media and simulations in people’s everyday lives

    Ambient Intelligence and Persuasive Technology: The Blurring Boundaries Between Human and Technology

    Get PDF
    The currently developing fields of Ambient Intelligence and Persuasive Technology bring about a convergence of information technology and cognitive science. Smart environments that are able to respond intelligently to what we do and that even aim to influence our behaviour challenge the basic frameworks we commonly use for understanding the relations and role divisions between human beings and technological artifacts. After discussing the promises and threats of these technologies, this article develops alternative conceptions of agency, freedom, and responsibility that make it possible to better understand and assess the social roles of Ambient Intelligence and Persuasive Technology. The central claim of the article is that these new technologies urge us to blur the boundaries between humans and technologies also at the level of our conceptual and moral frameworks

    PRELIMINARY STUDIES OF VERTICAL ACCELERATION OF A PASSENGER CAR PASSING THROUGH THE SPEED BUMP FOR VARIOUS DRIVING SPEEDS

    Get PDF
    The article proposes a phenomenological model of a passenger car. The model includes the biomechanical model of human bodies in the sitting position of Muksian and Nash acting as passengers, while the driver’s weight has been reduced to the concentrated weight of the loading seat. The research carried out in this study consisted of passing the vehicle through a transverse obstacle along the so-called speed bump. Vehicle passes through the threshold at three different speeds: 10km/h, 20km/h, and 30km/h. The purpose of the conducted experiments was to initially estimate the values of accelerations acting especially on the passenger at selected driving speeds. On the basis of conducted tests, it was possible to verify the numerical model of the vehicle overcoming the obstacle on the road. This approach allows the use of the proposed model to verify the forces and accelerations affecting the passenger, specified before any selected specific biomechanical model of the human person, for example, a model of pregnant women in this configuration allows us to estimate the forces and accelerations acting on the embryo while overcoming some obstacles on the road

    Smartphone-based vehicle telematics: a ten-year anniversary

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordJust as it has irrevocably reshaped social life, the fast growth of smartphone ownership is now beginning to revolutionize the driving experience and change how we think about automotive insurance, vehicle safety systems, and traffic research. This paper summarizes the first ten years of research in smartphone-based vehicle telematics, with a focus on user-friendly implementations and the challenges that arise due to the mobility of the smartphone. Notable academic and industrial projects are reviewed, and system aspects related to sensors, energy consumption, and human-machine interfaces are examined. Moreover, we highlight the differences between traditional and smartphone-based automotive navigation, and survey the state of the art in smartphone-based transportation mode classification, vehicular ad hoc networks, cloud computing, driver classification, and road condition monitoring. Future advances are expected to be driven by improvements in sensor technology, evidence of the societal benefits of current implementations, and the establishment of industry standards for sensor fusion and driver assessment
    corecore